Retos en clasificación ordinal: redes neuronales artificiales y métodos basados en proyecciones Challenges in ordinal classification: artificial neural networks and projection-based methods

Tesis Doctoral

Universidad de Granada Doctorado en Tecnologías de la Información y la Comunicación

Javier Sánchez Monedero jsanchezm at uco dot es Directores:

César Hervás Martínez y Pedro Antonio Gutiérrez Peña

Dept. of Computer Science and Numerical Analysis, University of Cordoba. Learning and Artificial Neural Networks (AYRNA) research group. http://www.uco.es/ayrna/

4th September 2013

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Outline

Applications Conclusions and Future Work

Outline	Introduction	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Outline

- Objectives
- Related work
- Class imbalance
- Proposals for OR
- Applications
- 7 Conclusions and Future Work

Outline	Introduction ●000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					
Intr	oductio	n				

Machine Learning: "Field of study that gives computers the ability to learn without being explicitly programmed"

Machine learning: Where does it fit? What is it not?

Outline	Introduction ●000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions
Introducti	on					
Intr	oductio	n				

Machine Learning: "Field of study that gives computers the ability to learn without being explicitly programmed"

Machine learning: Where does it fit? What is it not?

Pattern Recognition/System Modelling:

- Unsupervised learning
- Supervised learning

Outline	Introduction 0●00000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00	
Introducti	on						

Supervised learning

Regression problem "Given these data, a friend has a house of 75 square meters, how much can he expect to get?".

Tumour size

Classification problem "Can you estimate prognosis based on tumour size and known age?"

Outline	Introduction 00●0000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Introduction

Binary vs Ordinal Classification

Comparison of binary and ordinal classification

Outline	Introduction 000€000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Ordinal regression

Ordinal classification/regression (OR)

Definition: Ordinal classification (so called ranking, sorting or ordinal regression) is a supervised learning problem of predicting categories that have an ordered arrangement.

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Introduction

Ordinal regression

Ordinal classification/regression (OR)

Definition: Ordinal classification (so called ranking, sorting or ordinal regression) is a supervised learning problem of predicting categories that have an ordered arrangement.

Goals/Challenges:

- To exploit the ordinal relationship of the data.
- To minimize errors that consider the order between classes.

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Introduction

Ordinal regression

Ordinal classification/regression (OR)

Definition: Ordinal classification (so called ranking, sorting or ordinal regression) is a supervised learning problem of predicting categories that have an ordered arrangement.

Goals/Challenges:

- To exploit the ordinal relationship of the data.
- To minimize errors that consider the order between classes.

Applications

Teaching assistant evaluation, car insurance risk rating, pasture production prediction, breast cancer conservative treatment, credit rating...

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	~n					

Ordinal regression example: illness classification

Illness degrees based on an ordinal scale
 {C₁ = risk, C₂ = severe, C₃ = normal,
 C₄ = possible presence, C₅ = absence}

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					

Ordinal regression example: illness classification

- Illness degrees based on an ordinal scale
 {C₁ = risk, C₂ = severe, C₃ = normal,
 C₄ = possible presence, C₅ = absence}
- Class labels are imbued with order information

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					

Ordinal regression example: illness classification

- Illness degrees based on an ordinal scale
 {C₁ = risk, C₂ = severe, C₃ = normal,
 C₄ = possible presence, C₅ = absence}
- Class labels are imbued with order information
- Misclassification costs are not the same for different errors

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					

ntroduction

Ordinal regression example: illness classification

- Illness degrees based on an ordinal scale
 {C₁ = risk, C₂ = severe, C₃ = normal,
 C₄ = possible presence, C₅ = absence}
- Class labels are imbued with order information
- Misclassification costs are not the same for different errors
- Class imbalance can be very common (e.g. medicine, teaching evaluation...)

Outline	Introduction 00000€0	Objectives 00		Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	ion						
Pro	blem fo	rmulat	ion				

- The purpose is to learn a mapping φ from the input space X to a finite set C = {C₁, C₂,..., C_Q} containing Q labels, where the label set has a linear order relation C₁ ≺ C₂ ≺ ... ≺ C_Q.
- Each pattern is represented by a K-dimensional feature vector x ∈ X ⊆ ℝ^K and a class label y ∈ C.
- The training dataset **T** is composed of *N* patterns $\mathbf{T} = \{ (\mathbf{X}, Y) = (\mathbf{x}_i, y_i) : \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{C} (i = 1, ..., N) \}, \text{ with } \mathbf{x}_i = (x_{i,1}, x_{i,2}, ..., x_{i,K}).$

Outline	Introduction 000000●	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	ion					

• State-of-the-art in ordinal regression

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					

- State-of-the-art in ordinal regression
- Class imbalance

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					

- State-of-the-art in ordinal regression
- Class imbalance
- Data ordering exploitation

Outline	Introduction 0000000	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Introducti	on					

- State-of-the-art in ordinal regression
- Class imbalance
- Data ordering exploitation
- Real world problems

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Outline

1	Introduction
2	Objectives
3	Related work
4	Class imbala
	Proposals for
	Applications
7	Conclusions

Outline		Objectives ●0	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Objectives						
Obj	ectives	I				

All these challenges result in the following formal objectives considered for the thesis:

• State of the art in ordinal regression objectives:

- To propose an OR method taxonomy.
- **2** To review OR evaluation metrics.
- To select benchmark datasets.
- Q Class imbalance can be divided into the following objectives:
 - To perform an analysis of the state of the art for nominal class imbalance.
 - To optimize algorithms that tackle the nominal class imbalance as a multi-objective optimization problem.
 - **③** To explore new solutions considering ordinal class imbalance.

Outline		Objectives ●0	Class imbalance 0000 00	Proposals for OR 00 0000000	Applications 000 000	Conclusions 00
Objectives	5					
Ōbj	ectives	II				

Oata ordering exploitation:

- To check if data ordering exploitation improves classification performance in OR problems.
- To design OR algorithms based on standard regression but avoiding any trivial assumption about the latent variable.
- To develop latent variable modelling approaches only with restrictions in the labels set.
- To develop classifiers that exploit the input data ordering.
- To develop methods that relax the data projection of threshold methods.

Outline		Objectives ●0	Class imbalance 0000 00	Proposals for OR 00 0000000	Applications 000 000	Conclusions 00
Objectives						
Obj	ectives	III				

Application of OR methods to real problems:

- To develop sovereign credit rating classification methods using ordinal regression.
- To develop wind speed forecasting systems using ordinal regression.

Outline		Objectives 0●	Class imbalance 0000 00	Proposals for OR 00 0000000	Applications 000 000	Conclusions 00
Objective	5					

Proposals overview

Outline	Objectives 00	Related work 0	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Outline

	Introduction
2	Objectives
3	Related work
	Class imbalance
	Proposals for OR
5	Applications
7	Conclusions and Future

Outline		Objectives 00	Related work ●	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00			
Ordinal R	Ordinal Regression Methods									

Proposed Taxonomy

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Outline

	Introduction
	Objectives
	Related work
4	Class imbalance
<u> </u>	clubb imbulunce
5	Proposals for Ol
5	Proposals for Ol Applications

Outline	Objectives 00	Class imbalance ●000 ○0	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
B 1 - 1					

The Class Imbalance Problem

- Data imbalance refers to datasets where the number of patterns belonging to each class varies noticeably
- Classifiers tend to ignore minority classes
 - Typically, those are the most interesting ones (e.g. illness detection)
- Very active research in nominal binary and multi-class fields

Outline		Objectives 00		Class imbalance ●○○○ ○○	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00		

The Class Imbalance Problem

- Data imbalance refers to datasets where the number of patterns belonging to each class varies noticeably
- Classifiers tend to ignore minority classes
 - Typically, those are the most interesting ones (e.g. illness detection)
- Very active research in nominal binary and multi-class fields

Imbalance problem depends on the noise and overlap degree

Outline	Objectives 00	Class imbalance 0●00 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
D 1 - 1					

Evaluation of imbalanced problems

Evaluation metrics:

• Essential to evaluate and guide the learning algorithms

Outline	Objectives 00	Class imbalance ○●○○ ○○	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
D 1 - 1					

Evaluation of imbalanced problems

Evaluation metrics:

- Essential to evaluate and guide the learning algorithms
- Binary problems: precision/recall, F-measure, ROC and AUC

Outline	Objectives 00	Class imbalance ○●○○ ○○	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
D 1 - 1					

Evaluation of imbalanced problems

Evaluation metrics:

- Essential to evaluate and guide the learning algorithms
- Binary problems: precision/recall, F-measure, ROC and AUC
- Multi-class problems: Geometric Mean of accuracy for each class and the Accuracy-Minimum Sensitivity

Outline		Objectives 00	Class imbalance 00●0 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Related w	orks					

Solutions to the imbalance problem

- Data preprocessing level: the data is preprocessed suppressing or adding patterns → resampling techniques
- Model and algorithm level: the models and/or training algorithms consider performance of can be modified for dealing with data imbalance.
- O Hybrid approaches

Outline	Objectives 00	Class imbalance 000● 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
D 1 - 1					

Accuracy vs. Minimum Sensitivity

 Accuracy vs. Minimum Sensitivity for ANNs training formulated as a multi-objective optimization problem

Outline	Objectives 00	Class imbalance 000● 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
D 1 - 1					

Accuracy vs. Minimum Sensitivity

- Accuracy vs. Minimum Sensitivity for ANNs training formulated as a multi-objective optimization problem
- Multi Objective Evolutionary Algorithm (MOEA)

Outline	Objectives 00	Class imbalance 000● 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Accuracy vs. Minimum Sensitivity

- Accuracy vs. Minimum Sensitivity for ANNs training formulated as a multi-objective optimization problem
- Multi Objective Evolutionary Algorithm (MOEA)
- Pareto based algorithms: good classification performance at the cost of high computational cost
| Outline | Objectives
00 | | Class imbalance
○○○○
●○ | Proposals for OR
000
0000000 | Applications
000
000 | Conclusions
00 |
|-----------|------------------|-----|-------------------------------|------------------------------------|----------------------------|-------------------|
| Proposals | | | | | | |
| | | c . | | | | |

Multi-objective reformulation and Training algorithm

The previous Pareto based approach is reformulated as a weighed convex linear optimization problem

Outline	Objectives 00	Class imbalance ○○○○ ●○	Proposals for OR 00 0000000	Applications 000 000	Conclusions 00
Proposals					

Multi-objective reformulation and Training algorithm

The previous Pareto based approach is reformulated as a weighed convex linear optimization problem

... the error functions are **not differentiable**...

Multi-objective reformulation and Training algorithm

The previous Pareto based approach is reformulated as a weighed convex linear optimization problem

... the error functions are not differentiable...

- Evolutionary Extreme Learning Machine
 - Based on Differential Evolution
 - Avoids costly gradient descent optimization

Outline		Objectives 00	Class imbalance ○○○○ ○●	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Proposals						
Res	ults I					

Nemenyi Critical Distance (CD) diagrams comparing CCR and MS mean results:

Outline		Objectives 00	Class imbalance ○○○○ ○●	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00
Proposals						
Res	ults II					

Nemenyi Critical Distance (CD) diagrams comparing training time mean results:

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 00

Outline

1	Introduction
2	Objectives
3	Related work
4	Class imbalance
5	Proposals for OR
	Applications
	Conclusions and I

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR ●OO ○ ○○○○○○○	Applications 000 000	Conclusions 00				
Proposals for OR											
Pro	posals f	or OR									

- Latent variable modelling with probability distributions
- **2** Pairwise Class Distances Projection for Ordinal Classification
- Sevolutionary Extreme Learning Machine for Ordinal Regression

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 0●0 0000000	Applications 000 000	Conclusions 00
Proposals	for OR						
Thr	eshold	Models	1				

- Most common models in OR
- Assumption: there exist a latent continuous variable that captures the underlying order of the patterns
- This variable is difficult to measure or cannot be observed

Spaces

- Input space \mathcal{X} : observable
- Label space C: observable
- Latent space \mathcal{Z} : unobservable or non-directly observable

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 0●0 0000000	Applications 000 000	Conclusions 00
Proposals	for OR						
Thr	eshold	Models	Ш				

The threshold model can be represented with the following general expression:

$$f(\mathbf{x}, \boldsymbol{\theta}) = \begin{cases} C_1, & \text{if } g(\mathbf{x}) \leq \theta_1, \\ C_2, & \text{if } \theta_1 < g(\mathbf{x}) \leq \theta_2, \\ \vdots \\ C_Q, & \text{if } g(\mathbf{x}) > \theta_{Q-1}, \end{cases}$$
(1)

where $g: \mathcal{X} \to \mathbb{R}$ is the function that **projects data space onto the 1-dimensional latent space** $\mathcal{Z} \subseteq \mathbb{R}$ and $\theta_1 \leq \theta_2 \ldots \leq \theta_{Q-1}$ are the thresholds that divide the space into ordered intervals corresponding to the classes.

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR o●0 ooooooo	Applications 000 000	Conclusions 00

Proposals for OR

Threshold Models III

Example projection of Linear Discriminant Analysis for OR

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR OO ○ ○○○○○○○	Applications 000 000	Conclusions 00
Proposals	for OR					

Switching from classification to regression

• We move from the following classification problem...

 $\mathbf{T} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{C}, i = 1, \dots, N \}, \mathbf{x}_i = (x_{i1}, \dots, x_{iK}).$

Output: Section 2015 Control of the section of t

$$\mathbf{T}' = \left\{ (\mathbf{x}_i, \phi(\mathbf{x}_i^{(y_i)}) \mid (\mathbf{x}_i, y_i) \in \mathbf{T}
ight\},$$

where ϕ assigns a value in the latent space $\mathcal Z$ to each pattern during the training phase

- Prediction consist on estimating z values for each pattern and then assign it to each class according to a threshold set

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR ○○○ ● ○○○○○○○	Applications 000 000	Conclusions 00			
Latent Variable Modelling with Probability Distributions										
NVI	RI									

- Indirect modelling of the latent space: NVR algorithm
- The latent variable Z is considered as a random variable that is sampled, depending on the pattern class, from a set of different probability distributions
- The NVR approach does not assume any ordering in the input space, but only on the labels space, which is the strict definition of Ordinal Regression

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR	Applications 000 000	Conclusions 00	
Latent Va	riable Modelling	with Probabili	ity Distributions					
NV	RII							

Probability density functions for Q different triangular distributions. For each pattern $\mathbf{x}_i \in \text{class } C_q$, $F_q = (U_q | a_q, c_q, b_q)$ probability distribution is used for generating a random number.

A priori probability $\hat{f}_q = \frac{n_q}{N}$ of a random sample to belong to each class considering the training dataset, where N is the total number of pattern of n_q is the number of pattern of each class C_q .

Figure: NVR with triangular probability distributions example

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR ○○ ●○○○○○	Applications 000 000	Conclusions 00
Latent Va	riable Modelling	with PCD pro	jection				
_							

Exploitation of data ordering

 \bullet The strict definition of OR limits the order restriction to the labels space ${\cal C}$

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR ○○ ●○○○○○	Applications 000 000	Conclusions 00
Latent Va	riable Modelling	with PCD pro	jection				

Exploitation of data ordering

- \bullet The strict definition of OR limits the order restriction to the labels space ${\cal C}$
- Nevertheless, some authors suggest that the label ordering should be somehow present in the input space \mathcal{X}

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR ○○○ ●○○○○○○	Applications 000 000	Conclusions 00
Latent Va	riable Modelling	with PCD pro	jection				

Exploitation of data ordering

- \bullet The strict definition of OR limits the order restriction to the labels space ${\cal C}$
- Nevertheless, some authors suggest that the label ordering should be somehow present in the input space ${\cal X}$
- ¿Can this order be exploited to improve the latent space (Z) modelling?

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR ○○○ ○●○○○○○	Applications 000 000	Conclusions 00
			000000		

Data ordering restriction

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR ○○○ ○●○○○○○	Applications 000 000	Conclusions 00

Data ordering restriction

If there is an order in the input space, **this order should be always present between adjacent classes**

	000 0 000000	0 00 000	

How '*well*' is a pattern placed?

How '*well*' is a pattern placed in the latent space interval corresponding to its class?

	000 0 000000	0 00 000	

How '*well*' is a pattern placed?

How 'well' is a pattern placed in the latent space interval corresponding to its class? \rightarrow We estimate this value with the minimum distances to the patterns of neighbour classes.

Outline	Objectives	Class imbalance	Proposals for OR	Applications	Conclusions
			000 0000000	0 00 000	

Pairwise Class Distances projection

Outline Introduction	Objectives	Class imbalance	Proposals for OR	Applications	Conclusions
			000 0 0000●00	0 00 000	

Experimental results of SVR-PCDOC

					Accura	icy Mean _{SD}				
Method/DataSet	automobile	bondrate	contact-lenses	eucalyptus	newthyroid	pasture	squash-stored	squash-unstored	tae	winequality-red
ASAOR(C4.5)	$0.6962_{0.0585}$	$0.5333_{0.0743}$	$0.7500_{0.0848}$	$0.6391_{0.0360}$	$0.9167_{0.0388}$	$0.7519_{0.1450}$	$0.6026_{0.1179}$	$0.7744_{0.1009}$	$0.3947_{0.0578}$	$0.6027_{0.0211}$
GPOR	$0.6109_{0.0726}$	$0.5778_{0.0320}$	$0.6056_{0.0927}$	$0.6855_{0.0341}$	$0.9660_{0.0244}$	$0.5222_{0.1779}$	$0.4513_{0.1005}$	$0.6436_{0.1622}$	$0.3281_{0.0407}$	$0.6058_{0.0148}$
KLDOR	$0.7218_{0.0575}$	$0.5422_{0.0871}$	$0.5889_{0.1736}$	$0.6107_{0.0282}$	$0.9716_{0.0187}$	$0.6778_{0.1250}$	$0.7026_{0.1120}$	$0.8282_{0.1043}$	$0.5553_{0.0519}$	$0.6029_{0.0165}$
POM	$0.4673_{0.1940}$	$0.3444_{0.1605}$	$0.6222_{0.1379}$	$0.1594_{0.0364}$	$0.9722_{0.0222}$	$0.4963_{0.1537}$	$0.3821_{0.1518}$	$0.3487_{0.1425}$	$0.5123_{0.0890}$	$0.5940_{0.0174}$
SVC	$0.6974_{0.0623}$	$0.5556_{0.0686}$	$0.7944_{0.1290}$	$0.6534_{0.0368}$	$0.9667_{0.0250}$	$0.6333_{0.1342}$	$0.6564_{0.1273}$	$0.7000_{0.0817}$	$0.5386_{0.0617}$	$0.6358_{0.0210}$
SVMRank	$0.6840_{0.0548}$	$0.5533_{0.0725}$	$0.7000_{0.1107}$	$0.6511_{0.0244}$	$0.9685_{0.0224}$	$0.6481_{0.1340}$	$0.6641_{0.1040}$	$0.7487_{0.0855}$	$0.5219_{0.0735}$	$0.6178_{0.0215}$
SVOREX	0.66540.0679	$0.5533_{0.0961}$	$0.6500_{0.1265}$	$0.6467_{0.0288}$	$0.9673_{0.0221}$	$0.6296_{0.1249}$	$0.6282_{0.1326}$	$0.7179_{0.1283}$	$0.5807_{0.0602}$	$0.6293_{0.0217}$
SVORIM	0.63850.0757	0.54670.0916	0.63330.1269	0.63860.0283	0.96910.0214	0.6667.0.1203	0.63850.1181	0.76410.1029	0.58950.0661	0.63030.0219
SVR-PCDOC	$0.6782_{0.0595}$	$0.5397_{0.1009}$	$0.6889_{0.0952}$	$0.6482_{0.0289}$	$0.9735_{0.0205}$	0.65560.1025	$0.6846_{0.1235}$	$0.6949_{0.0845}$	$0.5816_{0.0642}$	$0.6306_{0.0225}$
					MAI	E Mean _{SD}				
Method/DataSet	automobile	bondrate	contact-lenses	eucalyptus	newthyroid	pasture	squash-stored	squash-unstored	tae	winequality-red
ASAOR(C4.5)	$0.4006_{0.0945}$	$0.6244_{0.0792}$	$0.3667_{0.1541}$	$0.3835_{0.0417}$	$0.0833_{0.0388}$	$0.2481_{0.1450}$	$0.4436_{0.1395}$	$0.2385_{0.1094}$	$0.6860_{0.1464}$	$0.4406_{0.0234}$
GPOR	$0.5942_{0.1307}$	$0.6244_{0.0619}$	$0.5111_{0.1747}$	$0.3310_{0.0378}$	$0.0340_{0.0244}$	$0.4889_{0.1904}$	$0.6256_{0.1481}$	$0.3564_{0.1622}$	$0.8614_{0.1551}$	$0.4248_{0.0172}$
KLDOR	$0.3340_{0.0760}$	$0.5867_{0.1071}$	$0.5389_{0.2085}$	$0.4236_{0.0321}$	$0.0284_{0.0187}$	$0.3222_{0.1250}$	$0.3077_{0.1278}$	$0.1718_{0.1043}$	$0.4728_{0.0686}$	$0.4434_{0.0188}$
POM	$0.9532_{0.6866}$	$0.9467_{0.3206}$	$0.5333_{0.2413}$	$2.0286_{0.0698}$	$0.0278_{0.0222}$	$0.5852_{0.2041}$	$0.8128_{0.2480}$	$0.8256_{0.2303}$	$0.6263_{0.1262}$	$0.4393_{0.0190}$
SVC	$0.4455_{0.0945}$	$0.6244_{0.0901}$	$0.3111_{0.2220}$	$0.3944_{0.0424}$	$0.0333_{0.0250}$	$0.3667_{0.1342}$	$0.3769_{0.1595}$	$0.3077_{0.0903}$	$0.5781_{0.0825}$	$0.4076_{0.0202}$
SVMRank	$0.3929_{0.0730}$	$0.5978_{0.0884}$	$0.3778_{0.1691}$	$0.3797_{0.0272}$	$0.0315_{0.0224}$	$0.3593_{0.1420}$	$0.3462_{0.1102}$	$0.2513_{0.0855}$	$0.5149_{0.0865}$	$0.4193_{0.0212}$
SVOREX	$0.4083_{0.0887}$	$0.5733_{0.1208}$	$0.4889_{0.1854}$	$0.3920_{0.0305}$	$0.0327_{0.0221}$	$0.3704_{0.1249}$	$0.3821_{0.1392}$	$0.2821_{0.1283}$	$0.4851_{0.0781}$	$0.4076_{0.0234}$
SVORIM	0.42440.0895	0.59110.1017	0.50560.1666	$0.3953_{0.0348}$	$0.0309_{0.0214}$	0.33330.1203	0.37180.1263	0.23850.1094	0.46050.0805	0.40570.0000
SVR-PCDOC	$0.3974_{0.0932}$	$0.5683_{0.1258}$	$0.3667_{0.1541}$	$0.3924_{0.0382}$	$0.0265_{0.0205}$	$0.3481_{0.1041}$	$0.3256_{0.1409}$	$0.3051_{0.0845}$	$0.4570_{0.0713}$	$0.4001_{0.0233}$
					AMA	E Mean _{SD}				
Method/DataSet	automobile	bondrate	contact-lenses	eucalyptus	newthyroid	pasture	squash-stored	squash-unstored	tae	winequality-red
ASAOR(C4.5)	$0.5110_{0.1044}$	$1.2262_{0.1745}$	$0.3148_{0.1239}$	$0.4281_{0.0449}$	$0.1152_{0.0563}$	$0.2481_{0.1450}$	$0.5019_{0.1924}$	$0.2556_{0.1485}$	$0.6890_{0.1508}$	$1.0453_{0.0801}$
GPOR	$0.7924_{0.1998}$	$1.3600_{0.1221}$	$0.6509_{0.2861}$	$0.3624_{0.0402}$	$0.0623_{0.0491}$	$0.4889_{0.1904}$	$0.7974_{0.2342}$	$0.4426_{0.2258}$	$0.8627_{0.1635}$	$1.0647_{0.0650}$
KLDOR	$0.3453_{0.1040}$	$1.0371_{0.2698}$	$0.5185_{0.2802}$	$0.4259_{0.0379}$	$0.0587_{0.0402}$	$0.3222_{0.1250}$	$0.3493_{0.1556}$	$0.3093_{0.1797}$	$0.4706_{0.0697}$	$1.2575_{0.0687}$
POM	$1.0263_{0.7996}$	$1.1031_{0.4034}$	$0.5352_{0.2754}$	$1.9898_{0.0483}$	$0.0496_{0.0402}$	$0.5852_{0.2041}$	$0.8152_{0.2510}$	$0.7907_{0.3316}$	$0.6266_{0.1279}$	$1.0852_{0.0374}$
SVC	$0.4862_{0.1247}$	$1.2654_{0.1832}$	$0.3065_{0.2772}$	$0.4329_{0.0475}$	$0.0599_{0.0512}$	$0.3667_{0.1342}$	$0.4463_{0.1888}$	$0.4444_{0.1631}$	$0.5762_{0.0833}$	$1.1189_{0.0693}$
SVMRank	$0.4677_{0.0963}$	$1.1840_{0.2246}$	$0.3852_{0.1976}$	$0.4143_{0.0301}$	$0.0570_{0.0485}$	$0.3593_{0.1420}$	$0.3907_{0.1485}$	$0.3481_{0.1591}$	$0.5125_{0.0862}$	$1.0679_{0.0689}$
SVOREX	$0.5184_{0.0955}$	$1.0717_{0.2166}$	$0.5167_{0.3029}$	$0.4110_{0.0335}$	$0.0542_{0.0415}$	$0.3704_{0.1249}$	$0.4326_{0.1720}$	$0.4259_{0.1567}$	$0.4839_{0.0787}$	$1.0954_{0.0670}$
SVORIM	0.52300.1050	$1.1139_{0.2330}$	0.58890.2590	$0.4198_{0.0429}$	0.05500.0418	0.33330 1203	$0.4270_{0.1481}$	$0.3667_{0.1404}$	0.45880.0810	1.09310.0723
SVR-PCDOC	0.44040.1277	$0.9692_{0.2244}$	$0.4204_{0.0978}$	$0.4001_{0.0429}$	$0.0451_{0.0401}$	$0.3481_{0.1041}$	$0.3596_{0.1838}$	$0.3963_{0.1583}$	$0.4548_{0.0706}$	1.04000.0963
					$\tau_{\rm b}$	Mean _{SD}				
Method/DataSet	automobile	bondrate	contact-lenses	eucalyptus	newthyroid	pasture	squash-stored	squash-unstored	tae	winequality-red
ASAOR(C4.5)	$0.7413_{0.0690}$	$0.1432_{0.1594}$	$0.6041_{0.2155}$	$0.8024_{0.0254}$	$0.8528_{0.0668}$	$0.7781_{0.1319}$	$0.4153_{0.2447}$	$0.6922_{0.1453}$	$0.2432_{0.1766}$	$0.4962_{0.0358}$
GPOR	$0.5573_{0.1176}$	$0.0000_{0.0000}$	$0.3480_{0.3037}$	$0.8298_{0.0201}$	$0.9375_{0.0449}$	$0.4609_{0.3143}$	$0.0748_{0.2110}$	$0.4201_{0.3313}$	$-0.0180_{0.1078}$	$0.5227_{0.0256}$
KLDOR	$0.7933_{0.0565}$	$0.3564_{0.2571}$	$0.4484_{0.2730}$	$0.7858_{0.0171}$	$0.9484_{0.0338}$	$0.7177_{0.1326}$	$0.6461_{0.1603}$	$0.7642_{0.1613}$	$0.4770_{0.1137}$	$0.4601_{0.0277}$
POM	$0.4954_{0.2833}$	$0.2897_{0.3017}$	$0.4575_{0.3092}$	$0.0080_{0.0375}$	$0.9494_{0.0402}$	$0.4631_{0.2368}$	$0.1689_{0.3040}$	$0.1087_{0.3054}$	$0.3167_{0.1290}$	$0.4969_{0.0253}$
SVC	$0.6948_{0.0768}$	$0.1209_{0.1767}$	$0.6009_{0.3003}$	$0.7827_{0.0250}$	$0.9394_{0.0453}$	$0.6979_{0.1331}$	$0.5412_{0.2396}$	$0.5990_{0.1395}$	$0.3752_{0.1100}$	$0.5160_{0.0272}$
SVMRank	$0.7512_{0.0539}$	$0.2540_{0.2465}$	$0.5773_{0.2417}$	$0.7997_{0.0170}$	$0.9426_{0.0406}$	$0.7072_{0.1290}$	$0.6013_{0.1479}$	$0.6615_{0.1081}$	$0.4171_{0.1195}$	$0.5247_{0.0298}$
SVOREX	$0.7486_{0.0618}$	$0.3685_{0.2160}$	$0.4252_{0.3041}$	$0.7938_{0.0186}$	$0.9408_{0.0396}$	$0.6907_{0.1150}$	$0.5335_{0.2072}$	$0.5923_{0.2119}$	$0.4453_{0.1104}$	$0.5313_{0.0278}$
SVORIM	$0.7483_{0.0648}$	0.29870.2302	$0.3824_{0.2689}$	$0.7921_{0.0197}$	$0.9442_{0.0382}$	0.71010.1140	$0.5417_{0.1667}$	$0.6561_{0.1868}$	$0.4819_{0.1182}$	0.5328n 0997
SVR-PCDOC	$0.7445_{0.0756}$	$0.4546_{0.2176}$	$0.6202_{0.2168}$	$0.7947_{0.0235}$	$0.9518_{0.0367}$	$0.7124_{0.1015}$	$0.6102_{0.2014}$	$0.6022_{0.1327}$	$0.4934_{0.1007}$	0.54150.0326

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR ○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Applications 000 000	Conclusions 00

Problem of the highly non-linear transformations

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR ○○○ ○○○○○○●	Applications 000 000	Conclusions 00	

Relaxing of the non-linear transformations

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications	Conclusions 00

Outline

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications ●00 ○○○	Conclusions 00
Sourcian	Cradit Dating					

Sovereign Credit Rating

Sovereign Credit Rating

has had an increasing importance since the beginning of the financial crisis

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications ●00 ○○○	Conclusions 00
Sovereign	Credit Rating					

Sovereign Credit Rating

has had an increasing importance since the beginning of the financial crisis

- Credit rating agencies opacity has been criticised by several authors, highlighting the suitability of designing more objective alternative methods
- Here we address the sovereign credit rating classification problem within an ordinal classification perspective

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications ○●○ ○○○	Conclusions 00
Sovereign	Credit Rating					
Wo	rk flow					

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications ○●○ ○○○	Conclusions 00
Sovereign	Credit Rating					
Wo	rk flow	11				

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 00● 000	Conclusions 00

Experimental Results I

	Accuracy			MAE	
Fitch	Moody's	S&P	Fitch	Moody's	S&P
0.6296	0.6667	0.5926	0.4074	0.4074	0.4815
0.4815	0.7778	0.3704	0.8889	0.3333	0.8889
0.6667	0.8519	0.6667	0.4074	0.2593	0.4444
0.7407	0.7778	0.7037	0.2593	0.2963	0.4074
0.5926	0.6296	0.7037	0.4815	0.4815	0.4074
0.6667	0.8148	0.6667	0.3333	0.2222	0.4074
0.7407	0.7037	0.6667	0.3704	0.4444	0.4444
0.7037	0.7778	0.5926	0.2963	0.2593	0.4444
0.6667	0.8148	0.6296	0.3333	0.2222	0.3704
0.7778	0.8148	0.7407	0.2222	0.2222	0.2593
	Fitch 0.6296 0.4815 0.6667 0.7407 0.5926 0.6667 0.7407 0.5926 0.6667 0.7037 0.6667 0.7778	Accuracy Fitch Moody's 0.6296 0.6667 0.4815 0.7778 0.6667 0.8519 0.7407 0.7778 0.5926 0.6296 0.6667 0.8148 0.7407 0.7037 0.7037 0.7778 0.6667 0.8148 0.7407 0.7037 0.7037 0.7778 0.6667 0.8148 0.7778 0.8148	Accuracy Fitch Moody's S&P 0.6296 0.6667 0.5926 0.4815 0.7778 0.3704 0.6667 0.8519 0.6667 0.7407 0.7778 0.7037 0.5926 0.6296 0.7037 0.5926 0.6296 0.7037 0.6667 0.8148 0.6667 0.7407 0.7037 0.6667 0.7037 0.7037 0.6667 0.7037 0.7037 0.6667 0.7037 0.7178 0.5926 0.6667 0.8148 0.6296 0.6667 0.8148 0.6296	Accuracy Fitch Moody's S&P Fitch 0.6296 0.6667 0.5926 0.4074 0.4815 0.7778 0.3704 0.8889 0.6667 0.8519 0.6667 0.4074 0.7407 0.7778 0.7037 0.2593 0.5926 0.6296 0.7037 0.4815 0.6667 0.8148 0.6667 0.3333 0.7407 0.7037 0.6667 0.3704 0.7037 0.7667 0.3704 0.3704 0.7037 0.6667 0.3333 0.7407 0.7037 0.6667 0.7037 0.7178 0.5926 0.2963 0.6667 0.3333 0.7778 0.8148 0.6296 0.3333 0.7407 0.2222	Accuracy MAE Fitch Moody's S&P Fitch Moody's 0.6296 0.6667 0.5926 0.4074 0.4074 0.4815 0.7778 0.3704 0.8889 0.3333 0.6667 0.8519 0.6667 0.4074 0.2593 0.7407 0.7778 0.7037 0.2593 0.2963 0.5926 0.6296 0.7037 0.4815 0.4815 0.6667 0.8148 0.6667 0.3333 0.2222 0.7407 0.7037 0.6667 0.3704 0.4444 0.7037 0.7778 0.5926 0.2963 0.2593 0.6667 0.8148 0.6296 0.3333 0.2222 0.7407 0.7778 0.5926 0.2963 0.2593 0.6667 0.8148 0.6296 0.3333 0.2222 0.7778 0.8148 0.6296 0.3333 0.2222

The best result is in bold face and the second best result in italics

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 00● 000	Conclusions 00

Experimental Results II

		AMAE			$ au_{b}$	
Method/DataSet	Fitch	Moody's	S&P	Fitch	Moody's	S&P
C4.5	0.4400	0.6800	0.5111	0.7621	0.7367	0.7655
Mlogistic	1.1600	0.6467	0.9333	0.5255	0.7719	0.5121
MLP	0.5267	0.4067	0.4000	0.7972	0.8097	0.7492
Slogistic	0.2667	0.6200	0.5111	0.8951	0.8151	0.8060
ASAOR(C4.5)	0.4533	0.7533	0.4222	0.6989	0.6655	0.7570
RED-SVM	0.2822	0.5356	0.4222	0.8835	0.8590	0.8052
GPOR	0.5133	0.9200	0.6222	0.7738	0.6869	0.7807
SVOREX	0.2422	0.5622	0.4444	0.8886	0.8610	0.7873
SVORIM	0.2756	0.5356	0.3556	0.8799	0.8525	0.8370
SVR-PCDOC	0.2089	0.5467	0.2889	0.9224	0.8610	0.8849

The best result is in bold face and the second best result in italics

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications ○○○ ●○○	Conclusions 00	
Wind For	ecasting						
Wir	nd Fored	casting					

- Wind farm managers need forecasting of wind speed to manage the farm (e.g. wind turbines stop)
- Wind speed had been studied as a standard regression problem
- Managers need a general idea of the level of speed → ordinal categories
- Simplification of the problem can help to improve accuracy of the models

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications ○○○ ○●○	Conclusions 00
Wind Fam					

Wind Forecasting

Wind Speed Categories

Figure: Wind speed classes $(C_1 \prec C_2 \prec C_3 \prec C_4)$ and its relationship with the power curve of the wind turbines.

Figure: Synoptic pressure grid considered (Sea Level Pressure values have been used in this chapter).

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 00 0000000	Applications ○○○ ○○●	Conclusions 00
Wind Fore	ecasting					

Experimental Results

Wind farm							
Classifier	Н	М	Р	U	Z	M	\overline{R}_M
SVM	0.242	0.267	0.365	0.382	0.300	0.311	2.90
LMT	0.250	0.293	0.459	0.383	0.373	0.352	6.20
C45	0.335	0.310	0.540	0.434	0.487	0.421	10.90
Ada10(C45)	0.314	0.318	0.492	0.381	0.420	0.385	8.60
Ada100(C45)	0.260	0.281	0.419	0.389	0.354	0.341	6.00
MLogistic	0.258	0.288	0.514	0.433	0.405	0.379	7.80
SLogistic	0.250	0.293	0.495	0.434	0.400	0.374	7.70
ASAOR(C45)	0.293	0.299	0.465	0.438	0.463	0.392	9.40
RED-SVM	0.242	0.261	0.364	0.382	0.295	0.309	2.20
SVOREX	0.245	0.268	0.354	0.378	0.317	0.312	2.70
SVORIM	0.248	0.267	0.355	0.378	0.314	0.312	2.60
GPOR	0.289	0.316	0.526	0.472	0.513	0.423	11.00
НММ	0.301	0.322	0.646	0.525	0.535	0.466	12.60

Test Mean Absolute Error (MAE) results

The best result is in bold face and the second best result in italics

Outline	Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions

Outline

- Introduction
 Objectives
 Related wor
 Class imbal
 - Proposals for OR
- Applications
- Conclusions and Future Work

Outline		Objectives 00	Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions ●0
Conclusio	ns and Future W	ork				

Conclusions and discussion I

- State of the art in ordinal regression objectives: taxonomy and review, datasets and performance metrics
- Class imbalance: linear combination of continuous error functions:
 - Improves computational time
 - Produces an unique candidate solution
 - Lessons for EELMOR
| Outline | | Objectives
00 | Class imbalance
0000
00 | Proposals for OR
000
0000000 | Applications
000
000 | Conclusions
●0 |
|-----------|-----------------|------------------|-------------------------------|------------------------------------|----------------------------|-------------------|
| Conclusio | ns and Future W | /ork | | | | |

Conclusions and discussion II

Oata ordering exploitation:

- Considering patterns distribution through space can improve performance
- Thresholds can be fixed so we reduce the number of free-parameters
- Strong pressure in the projection is not always the best option
- Not always the ordinal regression methods have the better performance

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 0●	
Conclusions and Future Work								
Fut	ure Wor	rk						

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 0●		
Conclusions and Future Work									
Fut	ure Wor	ŕk							
_									

PCD projection is sensitive to **outliers**

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 0●		
Conclusions and Future Work									
Fut	ure Wor	rk							
_									

PCD projection is sensitive to **outliers** \rightarrow improve **robustness**

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 0●		
Conclusions and Future Work									
Fut	ure Wor	ſk							

PCD projection is sensitive to **outliers** \rightarrow improve **robustness**

Why ordinal methods are not achieving the best results in *ordinal* datasets?

Outline		Objectives 00		Class imbalance 0000 00	Proposals for OR 000 0000000	Applications 000 000	Conclusions 0●		
Conclusions and Future Work									
Fut	ure Wor	ſk							

PCD projection is sensitive to **outliers** \rightarrow improve **robustness**

Why ordinal methods are not achieving the best results in *ordinal* datasets? \rightarrow How to learn and evaluate data ordering

Publications I

- P.A. Gutiérrez, M. Pérez-Ortiz, F. Fernandez-Navarro, J. Sánchez-Monedero, and C. Hervás-Martínez. An Experimental Study of Different Ordinal Regression Methods and Measures. In 7th International Conference on Hybrid Artificial Intelligence Systems, pages 296–307, 2012.
- [2] P.A. Gutiérrez, M. Pérez-Ortiz, J. Sánchez-Monedero, F. Fernández-Navarro, and C. Hervás-Martínez. Ordinal regression methods: survey and experimental study. Under Review, 2013.
- [3] Manuel M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero, and P.A. Gutiérrez. A Preliminary Study of Ordinal Metrics to Guide a Multi-Objective Evolutionary Algorithm. In Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), pages 1176–1181, Cordoba, Spain, nov 2011.
- [4] M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero, and P.A. Gutiérrez. Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. *Neurocomputing*, Accepted, 2013.
- [5] J. Sánchez-Monedero, C. Hervás-Martínez, F.J. Martínez-Estudillo, M. Carbonero Ruz, M. C. Ramírez Moreno, and M. Cruz-Ramírez. Evolutionary learning using a sensitivity-accuracy approach for classification. In 5th International Conference on Hybrid Artificial Intelligence Systems (HAIS2010), pages 0–0, 2010.
- [6] J. Sánchez-Monedero, C. Hervás-Martínez, P.A. Gutiérrez, M. Carbonero-Ruz, M. C. Ramírez-Moreno, and M. Cruz-Ramírez.

Evaluating the Performance of Evolutionary Extreme Learning Machines by a Combination of Sensitivity and Accuracy Measures.

Neural Network World, 20:899-912, 2010.

Publications II

- J. Sánchez-Monedero, P.A. Gutiérrez, F. Fernández-Navarro, and C. Hervás-Martínez. Weighting efficient accuracy and minimum sensitivity for evolving multi-class classifiers. *Neural Processing Letters*, 34(2):101–116, 2011.
- J. Sánchez-Monedero, P.A. Gutiérrez, and C. Hervás-Martínez. Evolutionary ordinal extreme learning machine.
 In International Conference on Hybrid Artificial Intelligence Systems (HAIS2013), volume Accepted, 2013.
- [9] J. Sánchez-Monedero, M. Carbonero-Ruz, D. Becerra-Alonso, F. Martínez-Estudillo, P.A. Gutiérrez, and C. Hervás-Martínez. Numerical variable reconstruction from ordinal categories based on probability distributions. In Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), pages 1182–1187, Cordoba, Spain, Nov 2011.
- [10] J. Sánchez-Monedero, P. A. Gutiérrez, P. Tiňo, and C. Hervás-Martínez. Exploitation of pairwise class distances for ordinal classification. *Neural Computation*, 25(9), 2013.
- [11] P.A. Gutiérrez, S. Salcedo-Sanz, C. Hervás-Martínez, L. Carro-Calvo, J. Sánchez-Monedero, and L. Prieto. Ordinal and nominal classification of wind speed from synoptic pressure patterns. *Engineering Applications of Artificial Intelligence*, 26(3):1008–1015, 2013.
- [12] J. Sánchez-Monedero, P. Campoy-Muñoz, P. A. Gutiérrez, and C. Hervás-Martínez. A guided data projection technique for classification of sovereign ratings: the case of european union 27. *Applied Soft Computing*, Under Review, 2012.

¡Gracias!

¿Preguntas? Questions? Retos en clasificación ordinal: redes neuronales artificiales y métodos basados en proyecciones Challenges in ordinal classification: artificial neural networks and projection-based methods

Tesis Doctoral

Universidad de Granada Doctorado en Tecnologías de la Información y la Comunicación

Javier Sánchez Monedero jsanchezm at uco dot es Directores:

César Hervás Martínez y Pedro Antonio Gutiérrez Peña

Dept. of Computer Science and Numerical Analysis, University of Cordoba. Learning and Artificial Neural Networks (AYRNA) research group. http://www.uco.es/ayrna/

4th September 2013