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D E C L A R A C I Ó N
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tedrático de Universidad D. César Hervás Martínez y del profesor D. Pedro Antonio
Gutiérrez Peña.
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R E S U M E N ( A B S T R A C T I N S PA N I S H )

El aprendizaje automático (machine learning) es una de las ramas de investigación
más populares de la inteligencia artificial. El objetivo es desarrollar de manera auto-
mática modelos que aprendan de una serie de datos y proporcionen una respuesta
sin intervención humana. Las aplicaciones del aprendizaje automático abarcan áreas
como robótica, microbiología, biomedicina, agronomía, epidemiología o economía,
entre otras muchas. En estos campos, es muy importante la tarea de predecir el valor
de una variable de respuesta que puede ser de dos o de múltiples categorías (pro-
blemas de clasificación nominal, como, por ejemplo, clasificar terrenos como libres
o infestados por malas hierbas para realizar una fumigación selectiva), o también
problemas donde la variable toma valores continuos en la recta real (problemas de
regresión, como, por ejemplo, la predicción de la velocidad del viento con el fin de
diseñar parques eólicos de la mejor forma posible).

Cuando existe una relación de orden entre las categorías de la variable de respues-
ta, el problema se denomina “clasificación ordinal”. La clasificación ordinal (también
conocida como regresión ordinal) es un tipo de problema de reconocimiento de pa-
trones que se encuentra situado entre la clasificación nominal y la regresión. De la
primera se diferencia en que existe un orden preestablecido entre las clases mien-
tras que de la regresión se distingue en que el conjunto de etiquetas es finito y las
diferencias entre los valores de las etiquetas no están definidas.

La clasificación ordinal tiene aplicación en multitud de áreas como la evaluación
de la enseñanza [1], evaluación de seguros de coches [2], producción de pasto [3],
tratamiento de cáncer de mama [4], predicción de la velocidad del viento [5] o eva-
luación del crédito [6]. A pesar de sus múltiples aplicaciones, la clasificación ordinal
ha recibido poca atención en la comunidad de aprendizaje automático en compara-
ción con los problemas de clasificación nominal. Sin embargo, el número de trabajos
relacionados con ésta está aumentando en los últimos años a nivel internacional.

La clasificación ordinal presenta diferentes retos que están abiertos a día de hoy:

revisión del estado del arte en regresión ordinal . En comparación con
la clasificación nominal, la regresión ordinal es un campo del aprendizaje au-
tomático que ha sido relativamente poco estudiado y explorado. Sin embargo,
existen trabajos y publicaciones en la bibliografía que motivan un análisis de
los mismos. Especialmente, parece necesario proponer una taxonomía de méto-
dos de regresión ordinal, así como realizar una recopilación de las principales
métricas de rendimiento. Estas dos cuestiones ayudarán a contextualizar las
propuestas de esta tesis.

desbalanceo de las clases . Considerando el evidente carácter multiclase y la
naturaleza de algunos problemas, las bases de datos ordinales presentan un
alto grado de desbalanceo entre las clases (algunas clases tienen muy pocos
patrones en comparación con otras), lo que puede provocar que algunos cla-
sificadores ignoren a las clases con un número significativamente menor de
patrones, convirtiéndolos en clasificadores triviales para las clases mayoritarias.
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explotación de la relación de orden de las clases . Varios autores defi-
nen a los clasificadores ordinales y sus algoritmos de entrenamiento como a)
métodos que optimizan la clasificación de acuerdo a métricas que consideren el
orden y magnitud de los errores y b) métodos que explotan el conocimiento a
priori de la disposición ordenada de los patrones en el espacio de entrada. No
obstante, el segundo aspecto no suele contemplarse de manera explícita en la
formulación de los clasificadores.

Esta tesis trabaja objetivos enunciados en torno a los anteriores retos, aunque se
centrará en los dos últimos objetivos, siendo el primero necesario pero no el eje fun-
damental de la tesis, y el segundo un problema no exclusivo de la clasificación ordi-
nal.

El resultado de este trabajo está reflejado en las publicaciones en conferencias y
revistas internacionales asociadas (ver sección específica Publications).
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A B S T R A C T

Machine learning is one of the most active branches of artificial intelligence. The
purpose is to automate the develop of models that learn from a set of data and pro-
vide an output without human interaction. Machine learning application examples
are robotics, microbiology, biomedicine, agronomy, epidemiology or finance among
others. In all these fields it is important to predict the value of a response variable that
can have two or multiple scales (for instance, nominal classification problems, such
as the classification of areas as weed-free or infested in order to perform a selective
treatment of weeds) or problems where the target variable is continuous (regression
problems, such as wind speed forecasting for wind farms set up).

When there exists an order relationship in the class variable, the problem is named
to as “ordinal regression” (also known as ordinal classification). The samples are
labelled into a set of category labels with an ordering amongst the categories. In
contrast to nominal classification, there is an ordinal relationship throughout the
categories and it is different from regression in that the number of ranks is finite
and exact amounts of difference between ranks are not defined. In this way, ordinal
classification lies somewhere between nominal classification and regression.

Ordinal classification problems are important, since they are common in our every-
day life where many problems require classification of items into naturally ordered
classes. Examples of these problems are the teaching assistant evaluation [1], car
insurance risk rating [2], pasture production [3], preference learning [7], breast can-
cer conservative treatment [4], wind forecasting [5] or credit rating [6]. However,
compared with general classification problems, much less effort has been devoted to
ordinal classification learning. Nevertheless, in the last decade an increasing number
of publications report progress in the artificial learning of ordinal concepts.

Nowadays, ordinal regression presents some challenges that form the research line
of the present thesis:

state-of-the-art in ordinal regression. Compared with nominal classifica-
tion, ordinal regression is a machine learning field much less studied and ex-
plored. However, there are several works and literature dealing with this issue,
which makes necessary to perform a proper analysis of them. A taxonomy
of ordinal regression methods and an effort to gather and compare the main
metrics for their evaluation would help to contextualize the proposals in the
field.

class imbalance . Considering the obvious multi-class feature and some of the
ordinal classification problems nature, the ordinal regression datasets present
a high imbalance degree (i.e. some classes have few patterns when compared
to the rest of the classes). Imbalance problem can generally harm classifiers,
which tend to ignore minority populated classes, presenting a trivial behaviour
with respect to those classes.

data ordering exploitation. Several authors define ordinal classifiers, and their
associated learning algorithms, as a) methods that optimize the classification
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task constrained to metrics that consider errors magnitude, and b) methods
which exploit the a priori knowledge about ordered placement of patterns ac-
cording to their class in the input space. However, the second aspect of ordinal
classifiers is not usually included explicitly in the classifier formulation.

The present thesis deals with objectives related to the aforementioned challenges,
though the two second challenges are the most relevant ones for the thesis.

The work done in this thesis is reflected in several international conferences and
journals (see Publications section).

xii



A G R A D E C I M I E N T O S

Resulta difícil recoger en estas líneas a todas las personas que han contribuido de
una forma u otra a la realización de esta tesis.

Sobre todo en este apartado quiero dar las gracias a mis directores de tesis, César
y Pedro. A César por depositar su confianza en mi al firmar mi beca de investigación
y proporcionarme todos los recursos –y tal vez más– que he necesitado para realizar
esta tesis; y también por la energía y ritmo que transmite, necesarios para deshacer
los enredos de una tesis y construir un buen perfil investigador. A Pedro le agradezco
su infinita paciencia y dedicación ayudando con las matemáticas, la programación o
la redacción de textos, y sobre todo por el ánimo y buen humor que transmite. Los
alumnos le acaban de elegir como uno de los mejores docentes, un mérito no valorado
por ninguna institución, pero sin duda de gran prestigio y distinción.

Además de a mis directores, quiero mostrar mi agradecimiento a mi tutor de es-
tancia en Birmingham, el profesor Peter Tiňo, quien ha contribuido notablemente a
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R E S U M E N E N C A S T E L L A N O ( S U M M A RY I N S PA N I S H )

Esta primera parte de la tesis corresponde a la traducción al castellano de
los capítulos de introducción y conclusiones de la misma, tal y como reco-
ge la normativa para la obtención de la Mención de Doctor Internacional,
desarrollada en el artículo 19 de las Normas reguladoras de las enseñan-
zas oficiales de Doctorado y del título de Doctor por la Universidad de
Granada aprobadas por Consejo de Gobierno de la Universidad de Gra-
nada en su sesión del 2 de Mayo del 2012. El capítulo de introducción
presenta el problema de la regresión ordinal dentro del campo del apren-
dizaje automático. El capítulo de conclusiones realiza un breve resumen
de las aportaciones de la tesis y propone algunas líneas de trabajo futuro.

This first part of the thesis presents a Spanish summary of the dissertation.
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R E S U M E N D E L A T E S I S

Resumen. Este capítulo de resumen en castellano presenta la traducción
del inglés de los capítulos de introducción y conclusiones de la tesis. Ini-
cialmente se introduce el aprendizaje automático (o machine learning) como
base para poder presentar el problema de la regresión ordinal (RO). La re-
gresión ordinal corresponde a un tipo de problemas que pertenecen a las
técnicas de clasificación supervisada, también conocida como «algoritmos
de aprendizaje» o incluso también como «clasificadores». En este capítulo
se hace una introducción breve al problema del aprendizaje supervisado
y a la regresión ordinal para contextualizar y motivar al lector antes de
establecer los principales objetivos de la tesis.

En las últimas secciones se realiza una discusión y elaboración de conclu-
siones. A grandes rasgos, en esta tesis se abordan los siguientes grandes
objetivos: realizar un estudio de revisión del estado del arte para RO, pro-
poner y desarrollar nuevo métodos de RO en torno a temas relacionados
con la RO y aplicar las técnicas de RO a problemas reales. En nuestra opi-
nión, estos objetivos se ha alcanzado, tal y como sintetiza este capítulo de
resumen.

0.1 aprendizaje automático y aprendizaje supervisado

El aprendizaje automático (o machine learning en inglés) no tiene una definición clara,
tal y como señala el Profesor Andrew Ng [10] en uno de sus cursos de introducción
a esta materia. En 1959, Arthur Samuel definió el aprendizaje automático como el
«campo de estudio que proporciona a los ordenadores la capacidad de aprender sin
haber sido explícitamente programados» [10, 11]. Más tarde, Tom M. Mitchell pro-
puso que «un programa informático se dice que aprende de una experiencia E con
respecto a una clase de tareas T y una medida de rendimiento P, si su rendimiento en
las tareas del tipo T, medida por P, mejora con la experiencia E» [12]. Así, podemos
afirmar que el aprendizaje automático equivale a «aprender de los datos» con el fin
de extraer el conocimiento necesario según diferentes propósitos, como por ejemplo
ayudar las personas en procesos de decisión o incluso automatizar totalmente decisio-
nes a partir de los datos, así como adaptar sistemas de manera dinámica para mejorar
las experiencias del usuario [13]. Este «aprender de los datos» hace que el aprendizaje
automático se sitúe entre diferentes ramas que pertenecen a la inteligencia artificial,
la estadística y las matemáticas (ver Figura 0.1). Dependiendo de cómo se realice
este aprendizaje se han desarrollado diferentes disciplinas, aunque probablemente
la más activa sea la conocida como inteligencia computacional (o computational intelli-

3
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Inteligencia Artificial Estadística / Matemáticas

Figura 0.1: Aprendizaje automático: dónde encaja y dónde no (fuente [13]).

gence) [14]. La inteligencia computacional engloba a las redes neuronales artificiales
[15, 16], los sistemas difusos y la computación evolutiva, incluida la inteligencia de
enjambres. Por motivos históricos, algunos métodos estadísticos y matemáticos más
recientes, como las máquinas de vectores soporte (support vector machines, SVM), las
redes Bayesianas y el razonamiento probabilístico, o incluso el procesamiento estadís-
tico del lenguaje natural, han sido incluidos en conferencias y revistas enfocadas a
la inteligencia computacional, mientras que otros como las técnicas de optimización
numérica, la teoría de aproximación, métodos estadísticos o la lógica de primer orden
están fuera de su ámbito [14].

Uno de los campos del aprendizaje automático más activos es el de reconocimiento
de patrones (pattern recognition), que a grandes rasgos se puede dividir entre aprendi-
zaje supervisado o aprendizaje no supervisado. El aprendizaje supervisado puede descri-
birse informalmente como enseñar al ordenador a hacer algo para que después el
ordenador pueda seguir haciéndolo a partir del conocimiento descubierto durante el
aprendizaje. Por otro lado, en el aprendizaje no supervisado el ordenador aprende a
hacer algo, y utilizamos este conocimiento para tratar de determinar tanto la estruc-
tura como los patrones de los datos. En el primer caso se proporciona al ordenador
un conjunto de datos etiquetados mientras que en el segundo caso se proporcionan
datos no etiquetados que el ordenador tiene que estructurar.

El aprendizaje supervisado tal vez sea el tipo de problema de aprendizaje auto-
mático más común. Por ejemplo, supongamos que queremos predecir el precio de
una vivienda a partir de su tamaño en metros cuadrados tal y como se muestra en
la Figura 0.2a. En este caso podemos recoger datos de precios de viviendas y su
tamaño en metros cuadrados, obteniendo así lo que se denomina como conjunto de
entrenamiento, que está compuesto por las variables independientes del sistema (el
tamaño en metros cuadrados, m2), y las variables dependientes1 o «respuestas correc-
tas» (etiquetas). El algoritmo de aprendizaje tiene que construir un modelo a partir
de estos datos etiquetados disponibles en el conjunto de entrenamiento con el obje-
tivo de poder predecir el precio correcto, que desconocemos, para nuevos datos no
vistos durante el aprendizaje. Este ejemplo en el que la variable que queremos prede-
cir es de naturaleza continua y perteneciente a la recta real es un tipo de problema
conocido como regresión. Los datos no vistos durante el proceso de aprendizaje, y que

1 Normalmente sólo habrá una variable dependiente, aunque existen ramas de la clasificación supervisa-
da como la clasificación multi-etiqueta en las que existe más de una variable dependiente.
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se utilizan para comprobar el rendimiento real del modelo de predicción, se suelen
denominar como datos de generalización o datos de test.

tamaño (m  )2

p
re

ci
o

 (
€

)

(a) Ejemplo de problema de regresión:«Dados
estos datos, un amigo tiene una casa de 75

metros cuadrados, ¿por cuánto podría espe-
rar venderla?».

E
d

a
d

Tamaño tumor

Tumor maligno
Tumor benigno

(b) Ejemplo de problema de clasificación «¿Po-
drías estimar un diagnóstico basado en el
tamaño del tumor y la edad del paciente?»

Figura 0.2: Ejemplos de problemas de regresión y clasificación (fuente [10]).

Por otro lado, cuando la variable para predecir es discreta, el problema se llama
problema de clasificación. Por ejemplo, la Figura 0.2b muestra un problema de clasifi-
cación en el que queremos discriminar si un cáncer de pecho es maligno o benigno
basándonos en la edad del paciente y en el tamaño del tumor2. A partir de los da-
tos de entrenamiento el algoritmo de aprendizaje debería construir un modelo capaz
de distinguir las dos clases («maligno» o «benigno»). La variable de salida puede
tener más de dos valores, por ejemplo tumor «benigno», tumor «maligno tipo A»,
tumor «maligno tipo B» y tumor «maligno tipo C». En el primer caso se denomina
problemas binarios y en el segundo problemas multi-clase. Existe un tercer tipo de
problemas de clasificación que de hecho ocupan el foco de interés de esta tesis: si
existe una relación de orden entre las clases, los problemas se denominan problemas
de clasificación ordinal. Por ejemplo, si queremos clasificar los tipos de un tumor como
«benigno», «sospechoso maligno», «maligno» o «maligno grave» probablemente este-
mos hablando de un problema de clasificación ordinal ya que estamos tratando con
diferentes grados de una enfermedad. La clasificación ordinal también se conoce como
regresión ordinal ya que tiene tanto relación con la clasificación como con la regresión,
tal y como se explicará en el siguiente apartado.

La Figura 0.3 nos muestra un ejemplo de un problema de clasificación binario
comparado con un problema de clasificación ordinal donde el objetivo es detectar
una enfermedad. En el primer caso, el clasificador sólo será capaz de detectar la
presencia o ausencia de una enfermedad. En el segundo caso, el clasificador podrá
detectar diferentes grados de la enfermedad. Llegados a este punto podríamos hablar
de clasificación nominal multi-clase, sin embargo hay varios puntos que diferencian
a la clasificación ordinal de la nominal: dada la naturaleza de problema, existe una
disposición de orden entre las etiquetas (clases), y este orden puede estar también

2 Estas variables se han elegido a modo de ejemplo, obviamente no es posible clasificar el tipo de tumor
únicamente a partir de estas dos variables.
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enfermedad
no-enfermedad

enfermedad grave
enfermedad normal
no-enfermedad

Figura 0.3: Un ejemplo de clasificación binaria (figura a la izquierda) frente a la clasificación
ordinal (figura de la derecha). En el primer caso hay dos estados para un patrón:
enfermo o no enfermo. Sin embargo, un experto que se apoye en técnicas de apren-
dizaje automático puede demandar grados de clasificación más finos, en cuyo caso
podría afrontarse el problema como clasificación multi-clase. Si las clases tienen
una relación de orden entre ellas estamos tratando con un problema de regresión
ordinal, que es un enfoque que aporta mayor precisión en este ejemplo.

presente en el espacio de atributos o variables de entrada3. Esto afecta al clasificador
de dos formas: primero, el clasificador debe explotar este conocimiento a priori sobre
la distribución de patrones en el espacio de entrada [17], y, segundo, la evaluación
del clasificador necesita medidas de rendimiento específicas [18]. Esto último se tra-
duce en que un error de clasificación de un patrón de la clase «enfermedad grave»
clasificado por el modelo como «sano» debe ser más penalizado que si el modelo
clasifica ese mismo patrón como «enfermedad normal». Estos dos retos marcan las
diferencias principales con la clasificación nominal, e inducen a pensar que afrontar
problemas como los del ejemplo anterior desde el punto de vista de la regresión or-
dinal puede tanto ayudar a mejorar los resultados como contribuir a la motivación
última del aprendizaje automático de «aprender de los datos».

0.2 clasificación ordinal

La clasificación ordinal, o regresión ordinal, es un problema de clasificación supervisa-
da en el que el objetivo es predecir la categoría a la que pertenece un patrón habiendo
una relación de orden entre las categorías. Además, cuando el problema manifiesta
claramente una naturaleza ordinal, se espera que este orden esté presente de alguna
manera en el espacio de entrada de los datos [17]. Los datos se etiquetan de acuerdo
a un conjunto de niveles de forma que se establece un orden entre los mismos. La re-
gresión ordinal se diferencia de la clasificación nominal en que existe una relación de
orden entre las categorías; y se diferencia de la regresión estándar en que el número
de niveles es finito, y la diferencia entre estos niveles no está definida. De esta forma,
la clasificación ordinal se sitúa entre la clasificación y la regresión.

Este tipo de problemas de clasificación no debe confundirse con problemas de orde-
nación (sorting) o de clasificación con rango (ranking). Los problemas de ordenación
pretenden relacionar todos los patrones del conjunto de generalización respecto a un

3 Aunque puede suceder que la naturaleza de un problema sugiera una relación de orden entre las
etiquetas que no se traslada al espacio de entrada.
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orden total. La clasificación con rango se refiere a ordenar los patrones con un orden
relativo. La clasificación ordinal también puede utilizarse para ordenar patrones, pe-
ro el objetivo es obtener una buena precisión de clasificación a la vez que se mantiene
el orden de los patrones.

La importancia de la clasificación ordinal es obvia si pensamos que el tipo de pro-
blemas donde es necesario clasificar patrones en clases ordenadas son habituales.
Ejemplos de estos problemas son la evaluación del apoyo al aprendizaje [1], evalua-
ción de seguros de vehículos [2], producción de pasto [3], problemas del área de
aprendizaje con preferencias [7], tratamiento conservativo de cáncer de pecho [4] o la
evaluación de créditos [6].

clase 1
clase 2
clase 3

clase 1
clase 2
clase 3

Figura 0.4: Ejemplo de de la necesidad de usar métricas de evaluación alternativas para los
clasificadores ordinales. Supongamos que tenemos un problema de clasificación
de una enfermedad donde la clase 1 significa «enfermedad grave», la clase 2 sig-
nifica «enfermedad normal» y la clase 3 significa «ausencia». En el ejemplo, el
mismo conjunto de puntos es clasificado por los clasificadores a) y b). MA y MB
son las correspondientes matrices de confusión. El clasificador a) tiene el mejor
rendimiento para la métrica CCR, sin embargo, el clasificador b) tiene mejor ren-
dimiento si se consideran las métricas MAE y AMAE. En este caso, aunque a)
obtiene el mejor ratio de clasificación, está cometiendo graves errores porque está
clasificando patrones de la clase 1 («enfermedad grave») con patrones de la clase 3
(«ausencia»). Las métricas MAE y AMAE mejoran para el clasificador b) señalan-
do que el clasificador b) es un clasificador ordinal mejor que a) para esta muestra
de patrones en concreto.

Los problemas de clasificación ordinal presentan dos grandes cuestiones que de-
ben considerarse para el diseño de los algoritmos de aprendizaje. En primer lugar,
la naturaleza del problema indica que el orden de las clases debe estar relacionado
de alguna forma con la distribución de patrones en el espacio de atributos, así como
en la distribución topológica de las clases (aunque, en general, esta relación será una
relación no lineal). En consecuencia, un clasificador debe explotar este conocimiento
a priori sobre el espacio de entrada [17]. En segundo lugar, cuando se evalúa el rendi-
miento de un clasificador ordinal, las métricas de rendimiento empleadas deben con-
siderar el orden de las clases, de tal forma que los errores de clasificación entre clases
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adyacentes deben ser considerados como menos importantes que errores de clasifi-
cación entre clases no adyacentes (más separadas en la escala ordinal). Por ejemplo,
consideremos un conjunto de datos de predicción del tiempo con la variable objeti-
vo tomando valores en el conjunto {muy frío, frío, templado, caluroso, muy caluroso}, con
una clara relación de orden natural entre las clases, muy frío ≺ frío ≺ templado ≺
caluroso ≺ muy caluroso. Es evidente que predecir erróneamente la clase caluroso cuan-
do la clase real es frío representa un error más grave que el error asociado a predecir
muy frío [18]. Así, son necesarias medidas de rendimiento específicas para evaluar el
rendimiento de un clasificador ordinal [18–20].

Mientras que la precisión, también conocida como ratio de clasificación correcta (Co-
rrect Classificacion Ratio, CCR), es la métrica más común para la clasificación nominal,
el error absoluto medio (Mean Absolute Error, MAE) es la medida más común en el
contexto de regresión ordinal. Además, en clasificación multi-clase se han propuesto
diversas medidas alternativas, por ejemplo, para evaluar el rendimiento individual
en las clases [21, 22] (incluyendo aquellas clases peor clasificadas). Análogamente, el
MAE medio (average MAE, AMAE) ha sido propuesto por Baccianella et al. [23] para
evaluar de forma más precisa el rendimiento en bases de datos desbalanceadas (aque-
llos problemas de clasificación donde el número de patrones de cada clase es muy
diferente). La Figura 0.4 presenta un ejemplo motivador de un problema de clasifi-
cación ordinal done queremos comparar el rendimiento de dos clasificadores sobre
el mismo conjunto de datos. En el ejemplo, el clasificador b) es mejor clasificador
ordinal que el clasificador a), a pesar de que la precisión global de a) es mayor.

0.3 breve estado del arte en regresión ordinal

En los últimos años han surgido bastantes propuestas relacionadas con la clasifica-
ción ordinal. Por ejemplo, Raykar et al. [24] han diseñado funciones de clasificación
por rangos en el contexto de la regresión ordinal y el filtrado de información colabora-
tivo. Kramer et al. [25] han mapeado la escala ordinal asignando variables numéricas
para luego aplicar un modelo de árbol de regresión.

Otras alternativas simples que aparecen en la literatura tratan de imponer la es-
tructura ordinal a través de la clasificación sensible a costes, donde clasificadores
estándares (nominales) tienen en cuenta la información ordinal mediante la distin-
ta penalización a los errores, normalmente mediante un coste igual a la desviación
absoluta entre la etiqueta predicha y la real [26].

La tercera alternativa directa sugerida en la literatura consiste en transformar el
problema de clasificación ordinal en un problema de clasificación binaria anidada [27,
28] para combinar, en una segunda fase, las predicciones de los clasificadores en la
predicción final ordinal. Es obvio que la información ordinal permite comparaciones
entre las diferentes etiquetas de clase. Para una etiqueta concreta k, una pregunta
asociada podría ser «¿es la etiqueta del patrón x mayor que k?». Esta pregunta es
equivalente a un problema de clasificación binaria, de modo que un problema de
clasificación ordinal puede resolverse aproximando cada problema de clasificación
binaria de manera independiente y combinando las salidas binarias para predecir
una clase [27].

Otra alternativa [28] impone pesos de forma explícita sobre los patrones de cada
sistema binario de forma que los errores en los patrones de entrenamiento se penali-
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zan de forma proporcional a la diferencia absoluta entre su rango y k. La binarización
de los problemas de regresión ordinal puede enfocarse también como problemas de
clasificación binaria aumentada, esto es, los problemas binarios no se resuelven de
forma independiente, y en cambio un único clasificador binario se construye para
todos los subproblemas. Por ejemplo, Cardoso y Pinto da Costa [29] añaden dimen-
siones adicionales y replican los puntos de los datos mediante lo que denominan
método de replicación de datos. Este espacio aumentado se utiliza para construir un
clasificador binario, y la proyección en el espacio original resulta en un clasificador
ordinal. Un marco de trabajo muy interesante en este sentido es el propuesto por Li y
Lin [30], Lin y Li [31], que realiza una reducción desde una clasificación ordinal con
costes a un problema de clasificación binaria ponderada (reduction from cost-sensitive
ordinal ranking to weighted binary classification, RED), que es capaz de reformular el pro-
blema como un problema binario utilizando una matriz para extender los patrones
originales, un esquema de ponderación y una matriz de costes en forma de V. Una
característica interesante de esta propuesta es que unifica muchos de los algoritmos
de ranking o de regresión ordinal, como el Perceptrón ranking [32] o las máquinas de
vectores soporte para regresión ordinal [33]. Más recientemente el aprendizaje por
cuantificación vectorial (learning vector quantization, LVQ) ha sido adaptado al caso
ordinal en el contexto de aprendizaje basado en prototipos [34]. En este trabajo la
información de orden se utiliza para seleccionar y adaptar prototipos para cada clase,
así como para mejorar el proceso de modificación de los prototipos.

Otras propuestas de métodos para clasificación ordinal – de hecho la mayoría de
ellas – pueden agruparse bajo el grupo de los modelos de umbral [35]. Estos métodos
suponen que la respuesta ordinal está asociada a una variable latente medida en es-
cala continua y modelada mediante intervalos de clase sobre la recta real. Basándose
en esta asunción, los algoritmos buscan una dirección sobre la que los patrones son
proyectados, y fijan una serie de umbrales que parten la dirección de la proyección
en intervalos consecutivos que representan las categorías ordinales [35–39].

0.4 motivación y retos

Tal y como se ha mencionado, la clasificación ordinal trata con problemas de cla-
sificación supervisada en los que existe un orden entre las categorías. Este orden se
suele deducir por la naturaleza del problema por parte de un experto o por simples
deducciones de los datos. Por ejemplo, un problema de detección de una enferme-
dad puede afrontarse como un problema de clasificación ordinal en el que el objetivo
es asignar la etiqueta de clase adecuada a un paciente a partir de unas variables de
entrada, siendo el conjunto de categorías {C1 = riesgo, C2 = severo, C3 = normal,
C4 = posible presencia, C5 = ausencia}, donde las etiquetas representan el grado de
una enfermedad asignado por médicos. Así, tenemos una relación de orden natural
entre las clases (riesgo ≺ severo ≺ normal ≺ posible presencia ≺ ausencia), done riesgo
es el peor grado de la enfermedad y ausencia el mejor. En este caso, la naturaleza
ordinal del problema puede deducirse no sólo por la observación de las variables
dependientes, las etiquetas de clase, sino también por la observación de las variables
independientes, que reflejan este orden en el espacio de atributos X . Es relativamen-
te obvio que variables como la fiebre o el pulso son variables que pueden crecer o
decrecer en relación a la etiqueta de clase.
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Hasta ahora se han mencionado dos temas de interés en clasificación ordinal: la
caracterización de errores y la explotación de la información de orden. Además, y
partiendo del ejemplo de detección de enfermedad, existen otras características de
los datos que son reconocidas ampliamente como retos dentro de la comunicad de
aprendizaje automático. En primer lugar, el problema del desbalanceo de clases tam-
bién está presente en los problemas de clasificación ordinal [17, 19, 40]. En el ejemplo
anterior podríamos afirmar que el número de patrones de la clase riesgo puede ser
relativamente menor comparado con el número de patrones de la clase ausencia. En
segundo lugar, puesto que a menudo las etiquetas de clase representan grados o
rangos, es bastante probable que se de el caso de solapamiento entre clases o entre
subconjuntos de las clases. De nuevo partiendo del ejemplo anterior, es probable que
las clases riesgo y severo estén altamente solapadas. Especialmente para los modelos
de umbral, que son los más extendidos [35, 40], la presencia de alta dimensionalidad
junto a la separabilidad no lineal de los datos pueden hacer que la función de proyec-
ción φ resulte en modelos complejos que impongan transformaciones altamente no
lineales desde el espacio de entrada al espacio latente. Esta imposición de modelos de-
masiado rígidos para las proyecciones puede derivar en problemas para clasificar los
patrones en las fronteras de la clase, sobre todo en presencia de ruido o solapamiento
entre clases, ya que los patrones situados en estas fronteras pueden ser erróneamente
proyectados a un intervalo correspondiente a una clase que no es la suya.

Considerando las cuestiones planteadas hasta ahora, podemos sintetizar los si-
guientes retos abiertos que forman parte de los objetivos de la tesis:

revisión del estado del arte . En comparación con la clasificación nominal, la
ordinal ha sido un campo muy poco explorado dentro del área de aprendizaje
automático. Sin embargo, existen varios trabajos y publicaciones relacionados
con la regresión ordinal, lo que hace necesario realizar un análisis de los mis-
mos. Principalmente, parece necesario proponer una taxonomía de los métodos
existentes, así como realizar el esfuerzo de recopilar las principales métricas de
específicas de evaluación. Estos dos temas ayudarán a contextualizar y evaluar
las propuestas que se hagan en la materia.

desbalanceo de clases . Considerando el obvio carácter multi-clase de los pro-
blemas de clasificación ordinal, y que en muchas ocasiones las clases represen-
tan grados, este tipo de conjuntos de datos presentan un alto grado de desba-
lanceo, es decir, algunas clases tienen muy pocos patrones comparadas con el
resto de las clases, lo que puede provocar que algunos clasificadores ignoren a
las clases con un número significativamente menor de patrones, convirtiéndolos
en clasificadores triviales para las clases mayoritarias.

explotación de la relación de orden de las clases . Varios autores defi-
nen a los clasificadores ordinales y sus algoritmos de entrenamiento como a)
métodos que optimizan la clasificación de acuerdo a métricas que consideren el
orden y magnitud de los errores y b) métodos que explotan el conocimiento a
priori de la disposición ordenada de los patrones en el espacio de entrada. No
obstante, el segundo aspecto no suele contemplarse de manera explícita en la
formulación de los clasificadores.
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Por último, debemos destacar que consideramos que no sólo es necesaria la pro-
puesta de nuevos métodos, sino también la aplicación de estos nuevos modelos y
algoritmos a problemas reales4. Así, se identificarán algunos problemas reales de
regresión ordinal y serán abordados con las técnicas desarrolladas.

0.5 objetivos

Esta tesis se centra en investigación en torno a los retos mencionados previamente,
aunque los dos últimos serán los principales. El primer reto es un punto de partida
necesario, mientras que el segundo no es un problema exclusivo de la clasificación
ordinal. Todos estos retos los podemos formalizar en una serie de objetivos que serán
abordados en diferentes capítulos:

1. Objetivos para la realización del estado del arte en regresión ordinal (RO):

a) Proponer una taxonomía para métodos de RO. La primera parte en el estudio
será la revisión de estado del arte para regresión ordinal. Aunque este ob-
jetivo está implícito en cualquier tesis, la RO es un campo relativamente
reciente y, hasta donde sabemos, no existen trabajos de revisión específicos
para este área. Por tanto, resulta especialmente importante recopilar traba-
jos existentes, así como proponer una taxonomía que permita organizar
los métodos y contribuir con esto al estado del arte. Esta es la razón por la
que pensamos que es necesario formalizar este objetivo.

b) Recopilar métricas de evaluación de RO. Tal y como se ha señalado, la RO
necesita métricas de rendimiento específicas que no sólo consideren el nú-
mero de errores, sino también la magnitud de los errores. Es necesario, por
tanto, un esfuerzo para identificar todas las propuestas al respecto.

c) Seleccionar bases de datos de pruebas. Una exploración preliminar del estado
del arte sugiere que no existen repositorios de bases de datos específicos
que sean públicos. El repositorio de bases de datos más utilizado en la
literatura es el ordinal regression benchmark dataset repository proporcionado
por Chu y Ghahra-mani [41]. Sin embargo, estas bases de datos de prue-
ba no representan problemas reales de clasificación ordinal, sino que son
problemas de regresión cuya variable de respuesta ha sido discretizada.
Respecto a esto, identificamos dos problemas: primero, las bases de datos
no pertenecen a problemas de clasificación reales, y cuestiones como el
etiquetado erróneo de los patrones o el desbalanceo de clases relacionado
con la naturaleza del problema no están presentes; en segundo lugar, al
utilizar intervalos de igual ancho para la generación de las etiquetas de
clases se produce un desbalanceo artificial de las clases en el conjunto de
datos.

2. En torno al problema del desbalanceo de clases se formalizan los siguientes
objetivos:

4 De hecho, el grupo de investigación AYRNA, al que el doctorando pertenece, tiene una demostrada
experiencia en la aplicación de técnicas de aprendizaje automático a problemas reales, ver publicaciones
del grupo en http://www.uco.es/ayrna.

http://www.uco.es/ayrna
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a) Realizar un análisis del estado del arte para el desbalanceo de clases en clasificación
nominal. Los problemas derivados del desbalanceo de clases han atraído de
manera notable la atención de muchos científicos, sobre todo en la última
década. Así pues es casi obligatorio explorar brevemente este trabajo pre-
vio antes de realizar nuevas propuestas.

b) Optimizar algoritmos que afronten el problema del desbalanceo de clases nominal
como un problema de optimización multi-objetivo. Una forma de tratar el des-
balanceo es mediante algoritmos evolutivos multi-objetivo, tal y como se
propone en los trabajos de Fernández-Caballero et al. [21] y Gutiérrez et al.
[22]. Los resultados de estos trabajos presentan buena clasificación para
todas las clases en entornos multi-clase, aunque su coste computacional es
alto. Esto motiva la exploración de alternativas más eficientes, como por
ejemplo la familia de algoritmos extreme learning machine (ELM) [42], un
tipo de algoritmo no iterativo que resulta muy eficiente para el entrena-
miento de redes neuronales artificiales.

c) Explorar nuevas soluciones considerando el desbalanceo de clases ordinal. Tal y
como se ha expuesto, los problemas de RO suelen presentar desbalanceo
entre las clases. Los dos objetivos previos servirán para el desarrollo de un
nuevo método que trate el problema del desbalanceo en el contexto de la
clasificación ordinal.

3. Explotación del orden de los datos. En este trabajo se desarrollarán varios mode-
los de variable latente, con especial atención a nuevos clasificadores ordinales
que exploten mejor el orden de los datos, en torno a esto se formulan los si-
guientes objetivos:

a) Comprobar si la explotación del orden de los datos mejora el rendimiento de clasi-
ficación en problemas de RO. Aunque la principal premisa de partida es que
en problemas de naturaleza ordinal la RO debería mejorar a la clasifica-
ción nominal, los resultados experimentales deberán confirmarla y así, en
general, los métodos de RO deberían obtener mejores resultados que los
nominales.

b) Diseñar algoritmos de RO basados en regresión estándar evitando asunciones tri-
viales sobre la variable latente. Tal y como se ha presentado en este capítulo
de introducción, algunas propuestas sugieren simplificaciones que impli-
can tratar el problema como un problema de regresión estándar [25]. Sin
embargo, obtener un valor óptimo para representar cada clase es un pro-
blema abierto que depende, en general, del problema de clasificación abor-
dado. Uno de los objetivos de esta tesis es extender esta propuesta previa
pero evitando simplificaciones triviales sobre las etiquetas de clase.

c) Desarrollar modelos de variable latente sólo considerando restricciones en el con-
junto de etiquetas. La definición estricta de RO se ajusta únicamente a la
restricción en el espacio de la variable objetivo. Por tanto, algunas de las
propuestas se desarrollarán considerando sólo esta restricción.

d) Desarrollar clasificadores que exploten el orden de los datos de entrada. A pesar de
la restricción estricta de RO (ver discusión en el Apartado 3.2 del Capítulo
3), algunos autores como Hühn y Hüllermeier [17] han extendido esta
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definición sugiriendo que el orden de las etiquetas puede estar presente
en el espacio de entradas. Así pues, tanto los algoritmos de aprendizaje
como los modelos podrían beneficiarse de la explotación de esta asunción
a priori, y por tanto nosotros estudiaremos esta cuestión con propuestas
específicas.

e) Desarrollar un método que relaje la proyección interna de los modelos de umbral.
Tal y como el lector podrá comprobar en el Capítulo 3, la mayoría de los
métodos construyen modelos de proyección que proyectan los patrones en
el espacio latente tratando, simultáneamente, de maximizar la distancia
inter-clase y minimizar la distancia intra-clase, de esta forma los patrones
de la misma clase se proyectan cerca en el espacio latente, y los patrones de
las clases diferentes son proyectados lo más separadamente posible. Tal y
como se ha comentado en esta introducción, en contextos de solapamiento
entre clases o ruido esta filosofía puede generar modelos que impongan
transformaciones demasiado rígidas que generalicen peor. Pensamos que
relajar estas condiciones de distancias intra e inter clases podría ayudar a
mejorar el rendimiento con datos de generalización, al mismo tiempo que
supondría una novedad en el modelado de la variable latente.

4. Aplicación de métodos de RO a problemas reales. En esta tesis se afrontarán
algunos problemas reales bajo el prisma de la RO con el objetivo último es
justificar la investigación en el área. A continuación formulamos los objetivos
asociados a dos problemas reales:

a) Desarrollo de un sistema de calificación del crédito de los países utilizando regre-
sión ordinal. La importancia del problema de la calificación del crédito de
los estados ha ido creciendo desde el estallido de la crisis financiera. Sin
embargo, el papel de las agencias de calificación de crédito en la crisis fi-
nanciera, entre otros factores, ha motivado una búsqueda de alternativas
muy activa en este tipo de problemas. La evaluación de la solvencia de los
emisores de deuda normalmente se hace dentro de una escala ordinal. A
pesar de esto, las técnicas de RO apenas se han utilizado para evaluar estos
problemas, siendo la clasificación binaria el paradigma predominante en
los ámbitos financiero y de crédito [43].

b) Desarrollo de sistemas de predicción de la velocidad del viento utilizando regresión
ordinal. Los trabajos previos sobre predicción de la velocidad del viento
tratan la velocidad del viento como una variable continua. Sin embargo,
los gestores de parques eólicos, más que una cifra de velocidad exacta,
necesitan tener una idea general de niveles de velocidad determinados por
la producción de energía asociada a estos intervalos. Con esta información,
los gestores de los parques eólicos pueden optimizar las operaciones de
los mismos, por ejemplo, la programación del encendido y apagado de las
turbinas de forma óptima. Parece pues interesante estudiar este problema
de predicción bajo el enfoque de la regresión ordinal.
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0.6 estructura de la tesis

Esta memoria de tesis se organiza de la siguiente forma (al principio de cada capí-
tulo se incluye un resumen de mismo y se enumeran las publicaciones asociadas):

El Capítulo 1: introduction, motivation and objectives realiza la in-
troducción la tesis en inglés, donde se incluye la presentación del aprendizaje
automático y la regresión ordinal y la formalización de objetivos.

El Capítulo 2: computational intelligence for classification and

regression introduce algunos conceptos y técnicas de inteligencia compu-
tacional que se emplean o extienden en esta tesis.

El Capítulo 3: ordinal regression presenta un estudio sobre la regresión
ordinal, incluyendo una propuesta de taxonomía para los métodos existentes
y un conjunto de métricas de rendimiento específicas para RO. Este capítulo
cubre los objetivos 1a y 1b.

Capítulo 4: new proposals for class imbalance problem presenta una
revisión de literatura relacionada con el desbalanceo de clases, y además mues-
tra nuevas propuestas para entrenamiento de clasificadores sensibles al proble-
ma del desbalanceo de clases, con especial énfasis en la optimización del coste
computacional. Este capítulo cubre los objetivos 2a y 2b.

El Capítulo 5: new proposals for ordinal regression recoge distintas
propuestas específicas para RO. La primera propuesta presentada en este ca-
pítulo establece brevemente las bases para enlazar los trabajos de desbalanceo
de clases y la regresión ordinal (objetivo 2c). La segunda propuesta enfoca el
problema de RO como un problema de regresión estándar (objetivo 3b) tanto
con explotación del orden de etiquetas (objetivo 3c) como explotación del or-
den de los datos de entrada (objetivo 3d). La última propuesta de este capítulo
propone una proyección del espacio de entrada de los datos al espacio latente
que recoge la idea de relajar la proyección tal y como identifica el objetivo 3e.
De forma transversal, se recogen varias bases de datos de RO, de manera que
el capítulo también contempla el objetivo 1c.

El Capítulo 6: application of ordinal regression to sovereign cre-
dit rating presenta la aplicación del método PCDOC (propuesto en el Capí-
tulo 5) al problema de la evaluación del crédito de los países. En este capítulo
no sólo se presenta un sistema de clasificación, sino también se propone el uso
de la proyección realizada por el regresor asociado al método PCDOC como
técnica de visualización del rango de los países que puede ser incorporada a
sistemas de apoyo a la decisión. Este capítulo cubre el objetivo 4a.

El Capítulo 7: application of ordinal regression to wind speed fo-
recasting describe la aplicación de técnicas de RO a la predicción de veloci-
dad del viento como herramienta de ayuda a los gestores de parques eólicos.
Este capítulo cubre el objetivo 4b.
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El Capítulo 0: resumen de la tesis finaliza la memoria de la tesis con un
resumen de las contribuciones científicas y proporciona algunas pistas sobre
posibles líneas de investigación futuras.

Por último, los resultados experimentales de los capítulos 5, 6 y 7 confirman la
hipótesis planteada en el objetivo 3a porque se muestra, en general, una mejora del
rendimiento obtenido por los métodos de RO frente a métodos nominales similares.

0.7 resumen y conclusiones

Esta memoria de tesis presenta un trabajo de investigación en el campo de la regre-
sión ordinal orientada fundamentalmente en torno a dos problemas: el desbalanceo
de clases – problema común con otros tipos de clasificación – y la explotación del
orden de los patrones de las clases con el fin de mejorar el rendimiento de los cla-
sificadores. En este apartado resumiremos las principales contribuciones de la tesis
agrupadas por temas.

0.7.1 Revisión de trabajos y taxonomía de métodos

La contribución científica de la tesis comienza en el Capítulo 3, donde se realiza un
estudio exhaustivo de métodos de regresión ordinal. En el momento de escribir esta
tesis, no tenemos conocimiento de trabajos de revisión similares para esta materia.
El capítulo define formalmente el problema de la regresión ordinal, y lo diferencia
claramente de otros problemas relacionados. Tras esto se presenta una propuesta de
taxonomía para métodos de RO que los divide en cuatro grandes grupos: aproxi-
maciones ingenuas o simplistas (naïve approaches), descomposiciones binarias (binary
decompositions), modelos de umbral (threshold models) y clasificación binaria aumenta-
da (augmented binary classification).

En nuestra opinión, la taxonomía propuesta puede ayudar a futuros investigado-
res a proponer y desarrollar métodos de RO, permitiendo categorizar las nuevas
propuestas y a analizar los métodos similares.

0.7.2 Desbalanceo de clases

El Capítulo 4 está dedicado al primero de los dos grandes objetivos de investiga-
ción de la tesis: el problema del desbalanceo de clases (también denominadas bases de
datos desbalanceadas). Tal y como se ha introducido, en los últimos años, y especial-
mente dentro de área de clasificación nominal, el tema del desbalanceo de clases ha
motivado mucha actividad en torno al diseño de clasificadores que consideren todas
las clases del problema, así como al desarrollo de métricas de evaluación específicas
que consideren el rendimiento de clasificación clase a clase.

No obstante, el problema del desbalanceo de clases se ha afrontado fundamental-
mente para problemas de clasificación binaria, debido a una serie de barreras que
evitan aplicar técnicas robustas, como el análisis ROC, a entornos multi-clase. Recien-
temente, este tipo de problemas desbalanceados multi-clase se han abordado desde
un enfoque de optimización multi-objetivo. Sin embargo, el coste computacional de
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estas propuestas motiva nuevos trabajos de investigación para obtener métodos más
eficientes.

Así, en el Capítulo 4 se exploran varias alternativas para afrontar el problema del
desbalanceo en entornos multi-clase de una manera más eficiente. Considerando el
rendimiento en clasificación para todas las clases y el tiempo computacional, se se-
leccionó como mejor opción la basada en una salida del modelo de red continua y
probabilística evaluada mediante una función basada en la raíz del error cuadrático
medio (RMSE). Los puntos que hacen efectiva y eficiente la alternativa seleccionada
son tres. Primero, las anteriores propuestas, basadas en frentes de Pareto, son refor-
muladas como un problema de optimización convexo de una combinación lineal y
ponderada de los objetivos considerados. Segundo, las funciones de error (a partir
de las salidas del modelo) se diseñaron para producir respuestas continuas y proba-
bilísticas. En este sentido se presentaron varias propuestas para guiar un algoritmo
evolutivo, destacando dos de las funciones de error continuas, una basada en la en-
tropía cruzada y la otra basada en el RMSE. La segunda resultó más robusta y más
fácil de calcular en términos de coste computacional. Estos dos factores redujeron
notablemente el coste de la evaluación de las soluciones candidatas, a la vez que ayu-
daron a generar clasificadores más robustos. El tercer factor clave en el diseño de este
sistema eficiente fue la selección del algoritmo Evolutionary Extreme Learning Machine
(E-ELM), un algoritmo muy eficiente para el entrenamiento de redes neuronales.

0.7.3 Modelos de regresión ordinal y aprendizaje

El segundo gran tema de investigación de esta tesis es la exploración de nuevos
modelos y algoritmos de aprendizaje para regresión ordinal. Las contribuciones en
esta materia se hacen en el Capítulo 5.

La primera propuesta es el algoritmo E-ELMOR, que hereda algunas de las lec-
ciones aprendidas en el Capítulo 4. En este sentido, se propone la función de error
RMSE ponderado (Weighed RMSE, WRMSE) como propuesta para guiar la búsque-
da de soluciones candidatas en un algoritmo evolutivo. El WRMSE refleja de forma
simultánea tres criterios que son deseables en un clasificador ordinal, a la vez que
tiene en cuenta el problema del desbalanceo de clases: a) los errores de clasificación
de clases no adyacentes deben ser más penalizados según la distancia entre las clases
crece; b) la probabilidad a posteriori de pertenencia de un patrón a cada clase debe
ser unimodal y decrecer monótonamente hacia las clases no adyacentes; c) en otras
métricas de error, como el MZE (Mean Zero-one Error o ratio de error medio), sólo
una de las salidas de la red neuronal (la que tenga valor máximo) suele contribuir a
la función de error, y además no contribuye con el valor de salida, por el contrario,
en métricas basadas en el RMSE, y teniendo disponible una salida probabilística con-
tinua, cada salida del modelo (probabilidades a posteriori) contribuye a la función de
error de manera que los umbrales de salida y probabilidades a posteriori tenderán
a ser más discriminantes. Todo esto es posible porque en este trabajo utilizamos un
único modelo multi-clase, ya que estas ideas no serían directamente trasladables a es-
quemas como las descomposiciones binarias. Los resultados de Evolutionary Extreme
Learning Machine for Ordinal Regression (E-ELMOR) suponen una mejora considerable
respecto a los métodos de referencia.
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(a) Representación de la base de datos toy.
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Figura 0.5: Representaciones de las bases de datos toy (propuesta por Herbrich et al. [8]) y la
base de datos spiral (propuesta en el Capítulo 5).

El resto de propuestas se centran en transformar el problema de clasificación en un
problema de regresión estándar como forma de modelar la variable latente descono-
cida –que refleja la disposición de orden entre los patrones de las diferentes clases–.

En esta línea, la segunda propuesta es el método Numerical Variable Reconstruction
(NVR). Esta alternativa se ciñe a la definición estricta de RO en la que la restricción
de orden sólo se aplica a las etiquetas, esto es, al espacio de salida. Este método ajusta
una serie de distribuciones de probabilidad para muestrear valores continuos que se
utilizan para representar a cada patrón en el espacio latente. Dependiendo de la clase,
el valor latente correspondiente al patrón se extrae de una función de probabilidad
diferente, de manera que los valores latentes para los patrones de una misma clase
siempre están acotados en el mismo intervalo. Una vez obtenida la representación
latente de los patrones, se entrena un modelo de regresión para predecir esta variable.
NVR funciona de manera aceptable en algunas bases de datos, sin embargo, cuando
extendemos la experimentación a más bases de datos y utilizamos más métricas de
evaluación del rendimiento, el método no resulta suficientemente robusto.

En este punto, consideramos que la idea de producir una variable continua aso-
ciada a los patrones y entrenar un regresor para predecir esta variable podría seguir
siendo válida, pero esta variable debería ser generada de una forma más adecuada. A
pesar de que la definición estricta de RO no considera orden en el espacio de entrada,
los modelos de umbral asumen de manera implícita que el espacio latente refleja de
alguna forma el orden total de los patrones. Así pues, surge la idea de explotar de
forma explícita este orden para construir la variable latente.

Para esto, nuestro objetivo es capturar el orden de los datos en la proyección uni-
dimensional que es el espacio latente, de manera que las posiciones relativas de los
patrones en el espacio de entrada se trasladen a posiciones relativas en el espacio
latente. Un idea inicial podría ser, por ejemplo, utilizar el centroide de cada clase,
de manera que los patrones se posicionen en el espacio latente según su distancia al
centroide de la clase. Sin embargo, una observación inicial de los conjuntos de datos
de ejemplo de la Figura 0.5 sugiere que esto no es un idea robusta, porque en estos
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conjuntos de datos los centroides de las clases son muy similares. Así surge la idea
de utilizar distancias entre pares de clases vecinas para realizar la proyección de los
patrones al espacio unidimensional. De esta forma nos ceñimos a la definición de
orden de la RO donde la relación orden está garantizada en las clases vecinas.

La idea expresada en el anterior párrafo es implementada por la propuesta de
proyección de distancias entre pares de clases (Pairwise Class Distance (PCD)), y el clasi-
ficador asociado, denominado proyección basada en distancias entre pares de clases para
clasificación ordinal (Pairwise Class Distances for Ordinal Classification (PCDOC)). Experi-
mentalmente, concluimos que el método PCDOC alcanzó un rendimiento adecuado
en comparación con varios métodos de estado del arte. Además, dentro de los ex-
perimentos estudiamos en profundidad las diferentes formas de modelado de los
métodos de umbral. Tras este análisis concluimos que el resto de métodos tienen a
compactar las proyecciones de los patrones de la misma clase, haciendo que el valor
latente de los patrones de cada clase (en el conjunto de entrenamiento) sea prácti-
camente el mismo. En algunas bases de datos, esta proyección tan forzada a través
de transformaciones altamente no lineales puede derivar en un peor rendimiento de
generalización. Esta forma de proyección es más relajada en el método PCDOC, que
tiende a producir modelos de proyección más suaves.

En conclusión, los resultados indican que nuestra propuesta de dos fases para la
clasificación ordinal es una alternativa a los métodos del estado del arte que resulta
viable y fácil de entender. Además, en el caso de PCDOC, la proyección construida en
la primera fase extrae de forma consistente información útil para la clasificación. Un
ejemplo de la utilidad de esta información es la aplicación de esta técnica al problema
de la evaluación del crédito soberano, realizada en el Capítulo 6, y que se resume en
el siguiente apartado.

0.7.4 Mejora de problemas de aplicación reales bajo el enfoque de regresión ordinal

Dos problemas de aplicación reales se han presentado en esta tesis.
La primera aplicación es abordada en el Capítulo 6, y consiste en la calificación

de crédito de los países utilizando el método PCDOC, el cuál es comparado experi-
mentalmente con otros clasificadores nominales y ordinales. La robustez del método
PCDOC, así como la de otros métodos, es destacable considerando varias métricas
de evaluación.

Además de realizar la tarea de clasificación, la proyección del modelo de regresión
interno del método PCDOC se utilizó como técnica de visualización de la posición
de los países evaluados, lo que proporciona una buena herramienta para construir,
por ejemplo, sistemas de ayuda a la decisión. En comparación con otras técnicas
de visualización de datos no supervisadas, la proyección del modelo PCDOC está
validada a través de su idoneidad para clasificar patrones de manera correcta.

La segunda aplicación es un problema de predicción de la velocidad del viento, y se
trata en el Capítulo 7. En este capítulo proponemos transformar los valores continuos
de velocidad del viento en un conjunto de etiquetas ordinales, de forma que cada
etiqueta está relacionada con la energía que se puede generar según el rango de
valores de velocidad del viento. En el capítulo se realizan una serie de experimentos
extensivos, comparando la capacidad de varios clasificadores nominales y ordinales
para predecir la etiqueta.
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La conclusión más importante de estos dos últimos capítulos es que el abordar
estos dos problemas como técnicas de regresión ordinal mejoró el rendimiento de
generalización. Esto, en definitiva, justifica la presente tesis y motiva futuras investi-
gaciones en el campo de la regresión ordinal.

0.8 trabajo futuro

Hay una serie de líneas de investigación que podrían extender el trabajo presentado
en esta tesis.

0.8.1 Posibles mejoras para los métodos propuestos

En relación a los métodos propuestos para regresión ordinal, las siguientes cuestio-
nes podrían ser exploradas:

En el caso de E-ELMOR, el trabajo futuro podría implicar el diseño y experi-
mentación con nuevos códigos de salida y nuevas funciones de error asociadas.
Por ejemplo, se podrían diseñar nuevos códigos de salida para la red neuronal
que consideren la distancia entre las etiquetas de clase.

En relación a la proyección PCD, al final del Capítulo 5 se realiza una discu-
sión sobre la posible influencia no deseada de valores atípicos o outliers en la
proyección. Tal y como se sugiere en el propio capítulo, una alternativa directa
sería utilizar un esquema del tipo k-NN para calcular la distancia mínima de un
patrón a los patrones de las clases vecinas. De esta forma, en lugar de utilizar
el valor mínimo de las distancias a puntos de una clase, se puede utilizar la
media de los k valores mínimos de las distancias a puntos de las clases q± 1.
Esto supondría una generalización de la propuesta que ahora mismo calcula
estas distancias con un valor de k = 1. Sin embargo, la inclusión de k implica
añadir un nuevo parámetro libre al proceso de entrenamiento.

0.8.2 La cuestión de la evaluación del orden de los datos

Distintos experimentos realizados durante el desarrollo de esta tesis han revelado
que algunos clasificadores nominales obtenían mejor rendimiento que los clasifica-
dores ordinales en algunas bases de datos aparentemente ordinales. Esto nos lleva a
pensar que incluso cuando la naturaleza de un problema sugiere que existe una re-
lación de orden entre las clases, este orden puede que no esté reflejado en el espacio
de entrada.

Así, como punto de partida para una posible línea de investigación, en este apar-
tado realizamos una serie de experimentos para alterar de forma artificial el orden
de las clases. El objetivo es comprobar cuándo se ve alterado el rendimiento de los
clasificadores ordinales si se cambia la restricción de orden. Para estos experimen-
tos, simplemente reetiquetamos las bases de datos para alterar el orden inicial de
las clases y por tanto el orden relativo de los patrones en el espacio de entrada. El
reetiquetado consiste en permutaciones de las etiquetas de clase. Para cada base de
datos en cuestión se realiza una serie de experimentos con las etiquetas originales
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(Original), una permutación aleatoria de las etiquetas (Shuffle), y un orden inverso
de las etiquetas (Inverse). La Tabla 0.1 muestra las tres combinaciones de etiquetas
utilizadas en los experimentos dependiendo del número de clases del problema y la
Tabla 0.2 muestra las características de las diferentes bases de datos utilizadas para
estos experimentos.

Tabla 0.1: Etiquetado original y opciones de reetiquetado (etiquetas «aleatorias» (Shuffle) y
orden inverso de las etiquetas (Inverse)). Observe que la segunda opción no es una
ejecución puramente aleatoria sino que el orden es alterado con la restricción de
evitar órdenes parciales entre las clases, y además, la combinación «aleatoria» resul-
tante es la misma para todos los experimentos para poder realizar comparaciones
entre métodos.

Número de clases Original Shuffle Inverse

2 [1,2] [2,1] [2,1]

3 [1,2,3] [1,3,2] [3,2,1]

4 [1,2,3,4] [1,4,2,3] [4,3,2,1]

5 [1,2,3,4,5] [3,1,5,2,4] [5,4,3,2,1]

6 [1,2,3,4,5,6] [1,5,2,4,6,3] [6,5,4,3,2,1]

7 [1,2,3,4,5,6,7] [3,1,7,5,2,6,4] [7,6,5,4,3,2,1]

8 [1,2,3,4,5,6,7,8] [3,8,1,7,5,2,6,4] [8,7,6,5,4,3,2,1]

9 [1,2,3,4,5,6,7,8,9] [3,8,1,7,5,9,2,6,4] [9,8,7,6,5,4,3,2,1]

10 [1,2,3,4,5,6,7,8,9,10] [3,10,8,1,7,5,9,2,6,4] [10,9,8,7,6,5,4,3,2,1]

Los experimentos se realizaron de una forma similar a como se han hecho en
el resto de la tesis, en este caso la precisión (Acc) es la métrica utilizada para la
comparación. No utilizamos métricas de RO ya que en estos experimentos no se
asume ninguna relación de orden concreta entre las etiquetas. Por este motivo Acc
es la métrica utilizada también como criterio de selección de los hiper-parámetros de
los métodos.

La Figura 0.6 muestra el rendimiento de varios clasificadores en las mismas ba-
ses de datos con distinto etiquetado. La figura revela que varios de los métodos de
RO tienen una caída notable en el rendimiento cuando el orden de las etiquetas es
alterado (y por tanto el orden de los datos en el espacio de entrada). En especial,
los métodos de umbral (PCDOC, Support Vector Ordinal Regression with implicit cons-
traints (SVORIM) y Kernel Discriminant Learning for Ordinal Regression (KDLOR)) se
ven afectados muy negativamente por el etiquetado aleatorio. En el caso de PCDOC
y KDLOR, el rendimiento también se degrada para el caso de la inversión de etique-
tas, mientras que el método SVORIM no se vio afectado. El método Extreme Learning
Machine for Ordinal Regression (ELMOR) también está afectado por la caída del ren-
dimiento, pero la pérdida de rendimiento relativa es menor. Como era de prever, el
método Cost Support Vector Classification (SVC) no está afectado por el reetiquetado
de las bases de datos5. De este estudio surgen las siguientes preguntas: a) ¿por qué la

5 Cabe destacar que, aunque SVC es un método determinista, hay pequeñas variaciones en el rendimiento
del clasificador. El motivo es que la selección de hiper-parámetros se realiza mediante una búsqueda en
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Tabla 0.2: Características de las bases de datos de prueba consideradas para los experimentos
de reetiquetado

Base de datos Nº Patr. Nº Atri. Nº Clases Distribución de las clases

automobile (AU) 205 71 6 (3, 22, 67, 54, 32, 27)

balance-scale (BS) 625 4 3 (288, 49, 288)

ERA (ER) 1000 4 9 (92, 142, 181, 172,

158, 118, 88, 31, 18)

eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)

LEV (LE) 1000 4 5 (93, 280, 403, 197, 27)

newthyroid (NT) 215 5 3 (30, 150, 35)

pasture (PA) 36 25 3 (12, 12, 12)

squash-stored (SS) 52 51 3 (23, 21, 8)

squash-unstored (SU) 52 52 3 (24, 24, 4)

SWD (SW) 1000 10 4 (32, 352, 399, 217)

tae (TA) 151 54 3 (49, 50, 52)

toy (TO) 300 2 5 (35, 87, 79, 68, 31)

winequality-red (WR) 1599 11 6 (10, 53, 681, 638, 199, 18)

caída de rendimiento es mayor para algunas bases de datos? b) ¿por qué algunos de
los métodos de RO son más robustos a este proceso de reetiquetado?. La respuesta
a la pregunta a) está relacionada con el hecho de que la estructura ordinal puede
encontrarse en el espacio de etiquetas o espacio de salida, pero no en el espacio de
entrada. La respuesta a la pregunta b) debería encontrarse en la forma en que cada
algoritmo construye y optimiza los diferentes clasificadores.

En conclusión, y considerando estos experimentos preliminares, existe motivación
suficiente para realizar un análisis del espacio de entrada con el fin de evaluar el gra-
do de orden de los problemas. Así, una de las líneas de trabajo futuro debería incluir
el desarrollo de métodos para evaluar lo oportuno de abordar un problema como
una tarea de clasificación ordinal o como una de clasificación nominal en función de
evaluaciones previas del conjunto de datos.

malla que realiza un proceso de validación cruzada interno. Este proceso de validación realiza diferentes
particiones de los datos de entrenamiento, produciendo conjuntos de entrenamiento y validación que
dependen de una semilla aleatoria. Especialmente para conjuntos de datos pequeños, la selección de
algunos de los patrones para los conjuntos de entrenamiento y validación puede influir en la selección
final de hiper-parámetros, y en consecuencia el rendimiento en generalización se ve afectado.
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(b) SVORIM.
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(c) KDLOR.

AU BS ERA EU LE NT PA SS SU SW TA TO WR
0

10

20

30

40

50

60

70

80

90

100

Original
Shuffle
Inverse

(d) ELMOR.
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(e) SVC.

Figura 0.6: Experimentos preliminares que muestran el rendimiento en Acc de diferentes mé-
todos con las etiquetas originales (Original), etiquetas «aleatorias» (Shuffle) y eti-
quetas con orden inverso (Inverse).



Part I

I N T R O D U C T I O N

This first part of the thesis presents the ordinal regression problem and
contextualizes it in the field of machine learning and computational intel-
ligence. Chapter 1 presents a general introduction to machine learning
and ordinal regression in order to state the objectives of the thesis. Chap-
ter 2 presents the main machine learning paradigms related to this thesis.
In Chapter 3, a state-of-the-art review regarding ordinal regression is de-
veloped.





1
I N T R O D U C T I O N , M O T I VAT I O N A N D O B J E C T I V E S

Summary. This chapter introduces the context of machine learning field
to study the ordinal classification problem. Ordinal classification lies in
the area of supervised classification techniques, also referred to as “clas-
sifiers“, “learning algorithms”, or simply “learners”. A brief introduction
to supervised learning and ordinal regression is done in order to contex-
tualize the reader and state the main objectives. The chapter ends up with
a road map of the thesis dissertation.

1.1 machine learning and supervised learning

Machine learning does not have a well established definition as pointed out by
Professor Andrew Ng [10]. In 1959, Arthur Samuel defined machine learning as a
“Field of study that gives computers the ability to learn without being explicitly pro-
grammed” [10, 11]. Later, Tom M. Mitchell stated “A computer program is said to
learn from experience E with respect to some class of tasks T and performance mea-
sure P, if its performance at tasks in T, as measured by P, improves with experience E”
[12]. Then, machine learning is equivalent to “learning from data” in order to extract
knowledge for several purposes, for instance to help humans to take decisions or
even automate decisions from data, as well as adapting systems dynamically to en-
able better user experiences [13]. This “learning from data” makes machine learning
to be placed somewhere between different science fields belonging to Artificial Intel-
ligence, Statistics and Mathematics (see Figure 1.1). Depending of how the learning
is done, different disciplines are developed, being provably the most active the com-
putational intelligence [14], which encloses artificial neural networks [15, 16], fuzzy
systems and evolutionary computation, including swarm intelligence. For historical
reasons some statistical and mathematical techniques, such as Support Vector Ma-
chines, rough sets, Bayesian networks and probabilistic reasoning, or even statistical
natural language processing, are accepted as valid computational intelligence top-
ics by computational intelligence conferences and journals, while many others, such
as numerical optimizations techniques, approximation theory, statistical methods or
first-order logic are beyond their scope [14].

One of the most active fields in machine learning is pattern recognition, that broadly
speaking can be divided into supervised learning, which can be informally described as
teaching the computer how to do something, then letting it use the new knowledge
found to do it, and unsupervised learning in which the computer learn how to do
something, and we use this to determine structure and patterns in data. In the first

25
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Artificial Intelligence Statistics / Mathematics

Figure 1.1: Machine learning: Where does it fit? What is it not? (source [13])

case, we provide the computer with labeled data whereas, in the second case, the data
is unlabeled and the computer has to structure it.

Supervised learning is probably the most common problem type in machine learn-
ing. For instance, let us suppose we want to predict house prices, see Figure 1.2a.
We can collect data regarding housing prices and how they relate to size in square
meters, and we can provide the algorithm this training data which is composed of
the independent variables (the size in m2) and the dependent variables1 or “right an-
swers”. The learning algorithm has to build a model from this labeled (supervised)
training data and it has to be able to predict the right price values, that we do not
know, from new (previously unseen) data. In this case, the problems are named to
as regression problems because the target variable is continuous. The unseen data used
for testing the real performance of the predictor is typically called generalization data,
test data or testing data.

p
ri

ce
 (

€
)

size (m  )
2

(a) Example regression problem “Given these
data, a friend has a house of 75 square me-
ters, how much can he expect to get?”.

A
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Tumour size

Tumour malignant
Tumour benign

(b) Example classification problem “Can you
estimate prognosis based on tumor size
and known age?”

Figure 1.2: Example of regression and classification problems (source [10]).

On the other hand, when the predicted variable is discrete, the problem is called
classification problem. For example, Figure 1.2b shows a classification problem in which

1 Typically there will be an unique dependent variable, however several supervised classification
branches, such as multi-label classification presents more than one dependent variable.
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we try to define breast cancer as malignant or benign based on tumour size and
patient’s age2. Based on the training data, the algorithm should be able to separate
the two classes. The output variable can have more than two classes, for instance
class benign, malignant type A, malignant type B and malignant type C. The former
are referred to as binary problems while the later are multi-class problems. There
is a third class of classification problems, which are indeed the main target of this
thesis. If there is an relation order between the classes, the problems are called ordinal
classification problems. In the example, if we want to classify a tumour in classes
“benign”, “suspiciously malignant”, “malignant” and “alarming malignant”, we are
probably talking about ordinal classification because we are dealing with different
degrees of an illness. Ordinal classification is also known as ordinal regression because
it has both relation to classification and regression, as will be explained in the next
section.

illness
no-illness

severe illness
normal illness
no-illness

Figure 1.3: An example of a binary (figure on the left side) and an ordinal classification (figure
on the right). In the first case, there are two status for a pattern: illness or no-
illness. Nevertheless, the expert can demand to have finer classification targets, so
the same problem can be addressed as a multi-class problem, which is the second
case. In addition, if the classes have an order arrangement between them, then we
are dealing with an ordinal regression problem, which is a more precise approach
for the above example.

Figure 1.3 shows an example of a binary classification problem compared to an
ordinal classification one with the purpose of detecting an illness. In the first case,
the learner will only be able to detect presence or absence of an illness. In the sec-
ond case, more degrees are allowed reflecting the severity of the illness. Up to this
point, we can talk about nominal multi-class problems. However a main issue makes
ordinal regression different to nominal classification: because of the problem nature,
there is an order arrangement between labels, and this order should be also present
in the attributes space3. This affects the classifier in two ways: first, the classifier
should exploit this a priori knowledge about the patterns distribution through the
input space [17] and, second, the classifier evaluation should be done with specific
performance measures [18]. That is, misclassifying a severe illness pattern as absence
must be more penalized than misclassifying the same pattern as normal illness. These

2 These variables have been selected for illustration purpose, it is obvious that a tumour cannot be classi-
fied only in terms of those variables.

3 Although it can happens that the problem nature suggests an order arrangement between labels that is
not reflected in the input space.
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two challenges draw the main differences with nominal classification, and so we
can state that addressing these problems as ordinal regression problems can help to
achieve the ultimate motivation of machine learning, “learning from data”.

1.2 ordinal classification

Ordinal classification or ordinal regression (OR) is a supervised learning problem
of predicting categories that have an ordered arrangement. When the problem is re-
ally exhibiting an ordinal nature, it is expected that this order is also present in the
data input space [17]. The samples are labelled by a set of ranks with an ordering
amongst the categories. In contrast to nominal classification, there is an ordinal rela-
tionship throughout the categories and it is different from regression in that the num-
ber of ranks is finite and exact amounts of difference between ranks are not defined.
In this way, ordinal classification lies somewhere between nominal classification and
regression.

These classification problems should not be confused with sorting or ranking. Sort-
ing is related to ranking all samples in the test set, with a total order. Ranking is
related to rank the samples with a relative order, and with a limited number of ranks
(partial order). Of course, ordinal regression can be used to rank samples, but its
objective is to obtain a good accuracy, and, at the same time, a good ranking.

The relevance of ordinal classification is obvious because this type of problems are
common in our everyday life, where many problems require classification of items
into naturally ordered classes. Examples of these problems are the teaching assis-
tant evaluation [1], car insurance risk rating [2], pasture production prediction [3],
many problems from the field of preference learning [7], breast cancer conservative
treatment [4] or credit rating [6].

Ordinal classification problems present two main issues to be taken into account
by the learning algorithm. Firstly, the nature of the problem implies that the class
order is somehow related to the distribution of patterns in the space of attributes,
and also to the topological distribution of the classes (although, in general, this re-
lation will be a nonlinear one). Therefore the classifier must exploit this a priori
knowledge about the input space [17]. Secondly, when evaluating an ordinal clas-
sifier, the performance metrics must consider the order of the classes so that mis-
classifications between adjacent classes should be considered less important than the
ones between non-adjacent classes, more separated in the ordinal scale. For exam-
ple, given an ordinal dataset of weather prediction with a target variable taking val-
ues in the set {Very cold, Cold, Mild, Hot, Very hot}, the natural order between classes,
Very cold ≺ Cold ≺ Mild ≺ Hot ≺ Very hot is clear. It is straightforward to think
that predicting class Hot when the real class is Cold represents a more severe error
than that associated with a Very cold prediction [18]. Thus, specialized measures are
needed for evaluating ordinal classifier performance [18–20].

Whereas Accuracy (Acc) (also known as Correct Classification Rate (CCR)) is the
most common performance metric for nominal classification, the Mean Absolute Er-
ror (MAE) is the most commonly used one in the context of ordinal regression. In
multi-class classification, alternative metrics have been proposed, for instance, to mea-
sure the performance of individual classes [21, 22] (including those classes which are
worse classified). Similarly, the Averaged Mean Absolute Error (AMAE) has being
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class 2
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Figure 1.4: Example of the necessity of using alternative performance metrics for ordinal re-
gression. Let us suppose this is the previous illness detection multi-class problem
where class 1 is severe illness, class 2 means normal illness and class 3 means ab-
sence. In the example, the same point set is classified by two different classifiers a)
and b). Classifier a) has the best performance regarding CCR, however classifier
b) has the best performance when considering MAE and AMAE metrics. In this
case, although a) is having the best classification ratio, it makes relevant mistakes
because it is misclassifying pattens of class 1 (severe illness) into class 3 (absence).
Observe that MAE and AMAE metrics improve for classifier b) pointing out that
b) is a better ordinal classifier than a) for the current dataset sample.

proposed by Baccianella et al. [23] in order to better evaluate the ordinal classifica-
tion performance in imbalanced datasets (those classification problems where the
number of patterns for each class is very different). Figure 1.4 presents a motiva-
tional example of an ordinal classification problem in which we want to compare the
performance of two classifiers with the same dataset. In the example, classifier b) is a
better ordinal classifier than classifier a), even thought the (global) Accuracy of a) is
the highest.

1.3 brief state-of-the-art of ordinal classification

Variety of approaches have been proposed for ordinal classification. For example,
Raykar et al. [24] learnt ranking functions in the context of ordinal regression and col-
laborative filtering datasets. Kramer et al. [25] mapped the ordinal scale by assigning
numerical values and then applied a regression tree model.

Other simple alternative that appeared in the literature tried to impose the ordinal
structure through the use of cost-sensitive classification, where standard (nominal)
classifiers are made aware of ordinal information through penalizing the misclassifi-
cation errors, usually by selecting a cost equal to the absolute deviation between the
actual and the predicted labels [26].

The third direct alternative suggested in the literature is to transform the ordinal
classification problem into a nested binary classification one [27, 28], and then to
combine the resulting classifier predictions to obtain the final decision. It is clear that



30 introduction, motivation and objectives

ordinal information allows ranks to be compared. For a given rank k, an associated
question could be “is the rank of pattern x greater than k?”. This question is exactly a
binary classification problem, and ordinal classification can be solved by approaching
each binary classification problem independently and combining the binary outputs
to a rank [27].

Other alternative [28] imposed explicit weights over the patterns of each binary
system in such a way that errors on training objects were penalized proportionally
to the absolute difference between their rank and k. Binarization of ordinal regres-
sion problems can also be tackled from augmented binary classification perspective,
i.e. binary problems are not solved independently, but a single binary classifier is
constructed for all the subproblems. For example, Cardoso and Pinto da Costa [29]
added additional dimensions and replicated the data points through what is known
as the data replication method. This augmented space was used to construct a binary
classifier and the projection onto the original one resulted in an ordinal classifier. A
very interesting framework in this direction is that proposed by Li and Lin [30], Lin
and Li [31], reduction from cost-sensitive ordinal ranking to weighted binary clas-
sification (RED), which is able to reformulate the problem as a binary problem by
using a matrix for the extension of the original samples, a weighting scheme and a
V-shaped cost matrix. An attractive feature of this framework is that it unifies many
existing ordinal ranking algorithms, such as perceptron ranking [32] and support
vector ordinal regression [33]. Recently, the Learning Vector Quantization (LVQ) was
adapted to the ordinal case in the context of prototype based learning [34]. In that
work the order information is utilized to select class prototypes to be adapted, and
to improve the prototype update process.

Moreover, other proposals addressing ordinal classification – indeed the vast ma-
jority of them – can be grouped under the umbrella of threshold methods [35]. These
methods assume that ordinal response is a coarsely measured latent continuous vari-
able, and model it as real intervals in one dimension. Based on this assumption,
the algorithms seek a direction onto which the samples are projected and a set of
thresholds that partition the direction into consecutive intervals representing ordinal
categories [35–39].

1.4 motivation and challenges

As previously mentioned, ordinal classification deals with supervised classification
problems in which there is an order within categories. This order is typically deduced
from the problem nature by an expert or by a simple inference about the data. For
instance, illness detection example can be considered as an ordinal classification prob-
lem with the purpose of assigning the right ordered category to a person given a set
of input variables, being the category label set {C1 = risk, C2 = severe, C3 = normal,
C4 = possible presence, C5 = absence}, where labels represent the illness degree as-
signed by doctors. Here there is a natural order between classes (risk ≺ severe ≺
normal ≺ possible presence ≺ absence), risk being the worse illness degree and absence
the best one. In this case, the ordinal nature of the problem can be deduced, not only
from the dependent variables, i.e. the labels, but also for the independent variables,
that reflect this order in the space of attributes X . For example, it is straightforward
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to observe that fever or heartbeat are variables that can have similar values for one
class and their neighbouring classes.

We have mentioned two main issues about ordinal classification: error character-
ization and data ordering exploitation. In addition, and starting from this illness
classification example, some data characteristics widely recognized as challenging is-
sues in machine learning can be pointed out. Firstly, class imbalance problem is also
present in ordinal classification problems [17, 19, 40]. In the example, the number of
patterns of class risk can be relatively small when compared to the number of pat-
terns of absence class. Secondly, since class labels often represent ranks or degrees,
class overlap can occur between all or a subset of classes. In the example, classes risk
and severe will be probably highly overlapped. Specially for latent variable models,
which are by far the most extended methods [35, 40], the presence of high dimension-
ality and nonlinearly separable data can make the mapping function φ result into
complex models that impose highly nonlinear transformations from the input space
to the latent space. Imposing too rigid models in these projections can derive into
problems for classifying patterns in the classes boundaries, specially in the presence
of the before mentioned noise or class overlapping, since patterns placed on those
boundaries can be projected to the interval belonging to the wrong class.

Considering the ahead issues, we can synthesize the following open challenges that
constitute the objectives of this thesis:

state-of-the-art in ordinal regression. Compared with nominal classifica-
tion, ordinal regression is a machine learning field much less studied and ex-
plored. However, there are several works and literature dealing with this ordi-
nal regression, which makes necessary to perform a proper analysis of them. A
taxonomy of ordinal regression methods and an effort to gather and compare
the main metrics for their evaluation would help to contextualize the proposals
in the field.

class imbalance . Considering the obvious multi-class feature and some of the
ordinal classification problems nature, the ordinal regression datasets present
a high imbalance degree (i.e. some classes have few patterns when compared
to the rest of the classes). Imbalance problem can generally harm classifiers,
which tend to ignore minority populated classes, presenting a trivial behaviour
with respect to those classes.

data ordering exploitation. Several authors define ordinal classifiers, and their
associated learning algorithms, as a) methods that optimize the classification
task constrained to metrics that consider errors ordering and magnitude, and b)
methods which exploit the a priori knowledge about ordered placement of pat-
terns. However, the second aspect of ordinal classifiers is not usually included
explicitly in the classifier formulation.

Last, it should be highlighted we consider necessary not the only the proposal of
new methods but also the application of the developed models and algorithms to real
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world problems4. Then, real world ordinal regression problems will be identified and
tackled by using the different methods proposed.

1.5 objectives

The present thesis addresses the aforementioned open challenges, although the
two latter are the main ones. The first challenge is a necessary starting point and the
second one is not exclusive for ordinal classification. All these challenges result in
the following formal objectives considered for the thesis:

1. State of the art in ordinal regression objectives:

a) To propose an OR method taxonomy. The first part in the study consist on
a review of the state of the art in ordinal regression. Although this ob-
jective is implicit in any thesis, ordinal regression is a very recent field
and, up to the authors knowledge, there are not surveys related to this
topic. Thereafter, it is even more important to collect existing works and
also to propose a taxonomy to organize existing methods in order to prop-
erly contribute to the state-of-the-art. That is the reason why we consider
necessary to formalize this objective.

b) To review OR evaluation metrics. As pointed out in the Introduction, ordinal
regression needs specific performance metrics to consider not only the
number of errors but also the magnitude of the errors. An effort has to
be made in order to gather all different metric proposals in this field.

c) To select benchmark datasets. Preliminary exploration of the state of the art
suggest that there are no public specific datasets repositories for ordinal
classification. The most used dataset repository in the literature is the or-
dinal regression benchmark datasets provided by Chu and Ghahramani [41].
However, the benchmark datasets provided by Chu and Ghahramani are
not real ordinal classification datasets but regression problems which tar-
get variable has been discretized. We identify two problems regarding
these datasets: first, the datasets are not real classification datasets, there-
fore issues such as class mislabel or class imbalance related to the prob-
lems nature are not present here; and second, using same width intervals
for classes label generation produce an artificial class imbalance in the
datasets.

2. Class imbalance can be divided into the following objectives:

a) To perform an analysis of the state of the art for nominal class imbalance. Class
imbalance problem has been widely attracting scientific attention in the
last decade. Then it is mandatory to briefly explore this work of the com-
munity before searching for new proposals.

b) To optimize algorithms that tackle the nominal class imbalance as a multi-objective
optimization problem. For dealing with class imbalance, multi-objective

4 Indeed, the AYRNA research group, to which the doctorate belongs to, has a demonstrated experience
in the application of machine learning techniques to real world problems, see Publications in http:

//www.uco.es/ayrna

http://www.uco.es/ayrna
http://www.uco.es/ayrna
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evolutionary algorithms can be considered as proposed in the works of
Fernández-Caballero et al. [21] and Gutiérrez et al. [22]. The results of
these works present interesting classification performance for all the classes
in multi-class problems but their computational cost is expensive. Then it
raises the issue of exploring more efficient approaches, such as Extreme
Learning Machine (ELM) [42], which is a non-iterative algorithm for learn-
ing neural networks.

c) To explore new solutions considering ordinal class imbalance. As previously
stated, ordinal regression datasets commonly suffer from the problem of
class imbalance. The two previous objectives are aimed at helping to de-
velop a new method for dealing with skewed class distributions in ordinal
regression problems.

3. Data ordering exploitation. In this work, latent variable models will be drawn
special attention to develop new ordinal classifiers which are able to better
exploit data ordering, so that the following objectives are formulated:

a) To check if data ordering exploitation improves classification performance in OR
problems. Although the main premise is that OR classification should per-
form better than nominal classification for ordinal problems, experimental
results should demonstrate a better performance of OR methods with re-
spect to standard nominal classifiers.

b) To design OR algorithms based on standard regression but avoiding any trivial
assumption about the latent variable. As presented in this chapter, some sim-
plifications [25] of the OR problem suggest using standard regression to
predict classes in the ordinal scale. However, how to choose an optimal
value to represent each class is an open issue, being dependent, in gen-
eral, of the problem considered. One of the objectives of this thesis is to
extend this previous proposals but avoiding any trivial assumption about
the class labels.

c) To develop latent variable modelling approaches only with restrictions in the labels
set. The strict definition of ordinal regression tighten the order restriction
to the target variable space. Then some of the proposals will be developed
only with this restriction.

d) To develop classifiers that exploit the input data ordering. In spite of this strict
definition (see discussion in Section 3.2 of Chapter 3), some authors such
as Hühn and Hüllermeier [17] have extended the definition of ordinal re-
gression by suggesting that the labels ordering can be present in the input
space. Then, algorithms and models could be benefited of exploiting this
a priori assumption and we will study it with specific proposals.

e) To develop methods that relax the data projection of threshold methods. As the
reader can check in Chapter 3, most of methods build projection models
mapping patterns to the latent space aiming at maximizing inter-class dis-
tances and minimizing intra-class distance, so that patterns of the same
class are closely projected in the latent space, and patterns of different
classes are projected as much separate as possible. Relaxing these condi-
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tions could improve generalization performance, and will present a nov-
elty in latent variable modelling.

4. Application of OR methods to real problems. In this thesis some real world
problems will be addressed under the umbrella of OR. The ultimate goal is to
justify the research in the field of OR. Here there are two objectives associated
to two real problems:

a) To develop sovereign credit rating classification methods using ordinal regression.
The problem of the sovereign rating has had an increasing importance
since the beginning of the financial crisis. However the credit rating agen-
cies role in the financial crisis, among other factors, has motivated the
research in this type of problems. Evaluations of creditworthiness are com-
monly formulated in an ordinal scale. Nevertheless, the OR regression
approach for modelling these problems is being scarcely used, and binary
classification has been the most common method applied in the financial
and credit fields [43].

b) To develop wind speed forecasting systems using ordinal regression. Previous
works consider the wind speed as a continuous target variable, estimating
then the corresponding wind series of continuous values. However, the
exact wind speed is not always needed by wind farms managers, and a
general idea of the level of speed is, in the majority of cases, enough to
set functional operations for the farm. Wind speed can be described in an
ordinal scale, and it seems interesting to evaluate the performance of OR
methods for this problem.

1.6 road map

The dissertation is organised as follows (each chapter will include a brief summary
of its contents and the list of publications associated to it):

Chapter 2: computational intelligence for classification and re-
gression introduces computational intelligence techniques that are used or
extended during the present thesis.

Chapter 3: ordinal regression presents the ordinal regression survey, in-
cluding a taxonomy proposal for methods and a collection of performance met-
rics for OR. This chapter covers objectives 1a and 1b.

Chapter 4: new proposals for class imbalance problem presents a
literature review for class imbalance, and establishes the new proposals for
efficient classifiers training with imbalanced sets. This chapter covers objectives
2a and 2b.

Chapter 5: new proposals for ordinal regression. In this chapter the
first proposal establishes the basis for linking the work with class imbalance and
OR (objective 2c). The second proposal deals with the latent variable modelling
as a regression target (objective 3b) with exploitation of the label ordering (goal
3c) and input space ordering (objective 3d). In this chapter the projection of
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the input data to the latent space is relaxed as mentioned in objective 3e. Also,
several datasets are collected and used, so that it also covers objective 1c.

Chapter 6: application of ordinal regression to sovereign credit

rating presents the application of the PCDOC method (proposed at Chapter 5)
to the problem of sovereign credit rating. In this chapter not only a classification
system is proposed, but also the projection of the regressor model in PCDOC is
proposed for ranking visualization, which might be suitable to build a decision
support system. This chapter covers objective 4a.

Chapter 7: application of ordinal regression to wind speed fore-
casting presents the application of OR techniques to wind forecasting to help
wind farms managers. This chapter covers objective 4b.

Chapter 8: summary, conclusions , and future work ends up this thesis
dissertation with a summary of the scientific contributions and with hints about
possible future research lines.

Finally, the experimental results in chapters 5, 6 and 7 cover objective 3a because
they show a general performance improvement obtained by OR methods with respect
to their nominal counterparts.





2
C O M P U TAT I O N A L I N T E L L I G E N C E F O R C L A S S I F I C AT I O N A N D
R E G R E S S I O N

Summary. This chapter presents some of the background knowledge for
this thesis. Specifically, both neural networks and Support Vector Ma-
chines are used as the base of the proposals, and this chapter aims to
briefly introduce them, defining their formulation and describing their
learning process.

2.1 introduction

As mentioned in the Introduction, machine learning groups methods that learn for
data in order to perform, in general, a classification or regression task. The goal is
to build models in such a way they generalize as better as possible over unseen data.
That is, the model will predict an output variable value according to new unlabelled
data.

Previous to the rise of machine learning and computational intelligence, these mod-
els were obtained through techniques such as optimization methods which aim to
minimize an error function. The researcher typically decided which method was
suitable for the data and then applied the optimization method. Nevertheless, data
nature is complex, and it presents handicaps such as non-linearity or high dimension-
ality which hints the modelling process.

With the ahead motivation, there arose techniques such as artificial neural networks
or the statistical learning theory in the 1960’s [44]. However, the lack of powerful com-
putational resources made those proposals lay exclusively on the theoretical plane. In
the 1980’s, the re-discovering of the backpropagation algorithm, as well as hardware
improvements, caused the rebirth of neural networks and the theoretical plane was
overcome. Later, in the 1990’s, other related techniques arose, such as Support Vector
Machines [44], also with theoretical and practical applications.

In this thesis, we will develop extensions to existing neural network models and
include the SVM for regression as a component of ordinal regression models. More-
over, we will employ several ANN and SVM methods to compare our proposals in
the experimental section. Thereafter, this chapter provides basic background related
to these techniques.

37
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2.2 artificial neural networks

2.2.1 Definition of ANNs

Artificial neural networks (ANN), or simply neural networks, [16, 45] are a flexible
modelling technique which is based on the emulation of biological nervous systems.
Then, ANNs try to emulate how the human brain solves problems, and therefore
their biological interpretation is similar to the activation of brain neurons [46].

ANNs combine large amount of processing elements which are highly intercon-
nected, and its computing capacity is developed through adaptive learning proce-
dures that properly fit the ANN model. The processing elements are typically called
nodes or neurons and they are structured in layers. The disposition allows ANNs to be
flexible and to be able of modelling complex systems.

The general form of an ANN model is a black box in the sense that interpretability
of cause-effect relationship cannot be easily obtained, and where attributes or input
variables belong, in general, to a high dimensional space1. Neurons are modelled by
means of processing units or model’s nodes. Each processing unit consists of a set of
input connections, an activation function (which computes a value from all the input
connections), the central processing core (that applies the activation function), and
finally an output or transfer function (which transfers the activation value to other
units).

Mathematically, a neuron’s network function f (x) is composed of other functions
gj(x), which can be also defined as a composition of functions. This can be graph-
ically represented as a network structure, with arrows depicting the dependencies
between nodes [15]. The composition typically used is the nonlinear weighted sum,
so f (x) = h

(
∑j wjgj(x)

)
, where h is a predefined nonlinear activation function. In

this way, the elements that define a node of an ANN are:

The weighted connections perform the role of the synaptic connections. Connec-
tion existence determines where it is possible that a node influences other node,
while signs and weight values define the type (excitatory or inhibitory) and
intensity of the influence.

The activation function calculates the base value or total input arriving to the
node (generally as a simple weighted sum of all inputs, i.e. the sum of the in-
puts multiplied by the weights or connections values). We call aj to the resulting
value.

The transfer function, also known as output function, calculates the node output
as a function of the neuron activation. It is typically represented as h(·), and
different types of functions may be used, from simple threshold functions to
complex nonlinear functions. The output value φj of a hidden node is:

φj(x) = h(aj) (2.1)

being x the vector of input variables describing a pattern.

1 Input variables are sometimes called attributes of features, however when working with kernel spaces,
attributes is reserved to the input space, and the unknown kernel space is refereed as the feature space
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Figure 2.1: Example of a single layer feed-forward neural network model with three layers,
four input variables, five hidden nodes and one output node2.

The architecture of an ANN is the way its nodes are arranged. The nodes, accord-
ing to their situation in the network can be of three types:

Input nodes that receive network input signals (this is, the value of the model
independent variables), and build the input layer.

Output nodes, which send output signals (this is, the dependent or response
variables), and make up the output layer.

Hidden nodes, which are the rest of the nodes, and are grouped into one or more
hidden layers.

There are several alternatives to organize the information transmission between
nodes in the network, and the alternatives determine the nature of the ANN. Gener-
ally, ANNs can be grouped into:

Feed-forward neural networks, in which information is propagated only from
input nodes to output nodes, i.e. their graph is a directed acyclic graph.

Recurrent neural networks, which propagates information from input to output
nodes and also to other nodes, allowing the existence of cycles in the graph.

In this thesis, we will focus on single layer feed-forward (SLFF) neural networks,
which are the simplest case with only three layers (input layer, output layer and one
hidden layer). Figure 2.1 shows an example of this kind of ANNs. These can be
formally defined as a linear regression model that considers a linear combination
of nonlinear transformations of the input variables (φj(x, wj)), with the following
expression:

y(x,θ) = β0 +
M

∑
j=1

β jφj(x, wj) (2.2)

where M is the number of nonlinear transformation, θ = {β, w1, . . . , wM} is the
parameter set associated to the model, β = {β0, ..., βM} are the coefficient values
associated to the lineal part of the model, φj(x, wj) represent the basis functions and
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x = {x1, ..., xK} is the vector containing the input or independent variables. This type
of models are known as linear basis function models [9]. The polynomial regression
is an example of these models in which there is only one input variable and each
basis function is a power of this variable, φj(x) = xj. An extension of these type
of regression models are the spline functions regression methods, in which the in-
put space is divided into different regions and each region is approximated with a
different polynomial [47]. There are numerous options for selecting basis functions
typology, for instance, Gaussian functions that result in radial basis functions (RBF)
[48, 49] neural networks, sigmoidal units which produce the MultiLayer Perceptron
(MLP) [50], or product unit functions [51].

2.2.2 Taxonomy of neural networks according to the basis function

In general terms, we can consider two classes of activation functions for neurons
or nodes: additive and multiplicative. These types of functions result in two types of
ANNs, whose peculiarities are discussed below:

The additive model is the most used class. The output function of this neurons is

φj(x, wj) = h(wj0 + wj1x1 + wj2x2 + ... + wjKxK),

where wj = {wj0, wj1, ..., wjK} represents the value of the coefficients associated
with the node, h(·) the transfer function and wj0 the node activation threshold
or bias. There are several kinds of additive nodes, for instance threshold neu-
rons or perceptron [46] (which employ a step function), sigmoidal units (which
consider functions such as logistic sigmoid, hyperbolic tangent or arctangent
functions) and the lineal nodes (where the transfer function is the identity func-
tion).

The multiplicative model is a more recent model which aims to model problems
in which there is an interaction between variables and decision regions that
cannot be separated by hyper-planes [52]. The more general approach here are
the product units (PUs):

φj(x, wj) = x
wj1
1 · x

wj2
2 · ... · x

wjK
K

being wj = {wj1, wj2, ..., wjK} because the bias parameter is nonsense sense here.
Since the weights wj1, wj2...wjK are real numbers, PUs generalize other classes
of multiplicative neurons.

On the other hand, considering the basis functions, we can distinguish between:

Kernel functions, which are local functions such as RBFs. Those functions have
better capacity for approximating isolated data, but they can perform worse in
the global space or when the number of input variables is high.

Projection functions, that are global functions, such as the sigmoidal or product
unit. They tend to have more difficulties to deal with isolated data but their
performance is in general better when the number of input dimensions grows.

Following sections summarize the most extended models for single layer feedfor-
ward neural networks.
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2.2.3 Sigmoidal unit neural networks

A neural network with sigmoidal units or, more commonly called, a MultiLayer
Perceptron (MLP), is that formed by sigmoidal units in the hidden layer. These nodes
present an additive projection model with the following output function:

φj(x, wj) =
1

1 + e−(wj0+wj1·x1+wj2·x2+...+wjK ·xK)
=

1

1 + e−(wj0+∑K
i=1 wji ·xi)

The MLP networks have a important property: the family of real functions that
represent those networks can approximate any function with enough precision if the
proper number of hidden nodes is selected. This property provides a solid theoretic
basis for the study, development and application of these networks [50, 53, 54].

2.2.4 Product unit neural networks

The product unit neural networks (PUNNs) were introduced by Durbin and Rumel-
hart in 1989 [51], and are those consisting of product unit nodes in the hidden layer.
These units follow a multiplicative projection model with the output function:

φj(x, wj) = x
wj1
1 · x

wj2
2 · ... · x

wjK
K =

K

∏
i=1

x
wji
i

where wj = {wj1, wj2, ..., wjK} because these ANN models do not have bias in the
input layer.

Finally, as a consequence of the Stone–Weierstrass theorem3, it is direct to prove
that PUNNs are universal approximators (observe that polynomial functions in sev-
eral variables are a subset of product unit models) [55, 56].

2.2.5 Radial basis function neural networks

A radial basis function (RBF) is a real-valued function whose value depends only
on the distance from the origin, or alternatively on the distance from some other point
called center. Then, RBF neural networks are those having RBF nodes in the hidden
layer. Each one of the RBF nodes makes an independent local approximation of the
input space, typically by a Gaussian function. The lineal output layer joins the effect
of all the nodes by adding each obtained value in the hidden layer. The key idea is
that each node is placed in a region in the input space (i.e. with center or mean in
this region) and a specific radious or width. The learning process for RBFs consists
on moving the hidden layer nodes through the input space varying the center and
widths, in such a way the network is better adjusted to the training data.

The activation function is equivalent to the Euclidean distance function (where
the RBF center is the vector wj), and the transfer function is generally a Gaussian
function. Thereafter, the transfer function is:

φj(x, wj) = e
−1

2

(
d(x, wj)

rj

)2

,

3 The Weierstrass approximation theorem states that every continuous function defined on a closed inter-
val [a, b] can be uniformly approximated as closely as desired by a polynomial function.
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where

d(x, wj) =‖ x−wj ‖=

√√√√ K

∑
i=1

(xi − wji)2,

wj = {wj1, wj2, ..., wjK} is the center of the RBF and rj is its radius or width.
RBF networks have also been proved to be universal approximators [57]. Com-

pared with MLP, RBF neural networks have the advantage of having local elements
in the model, and, as a consequence only some neurons are activated for a specific
pattern. This facilitates the training process, and both local optima and error surface
complexity are reduced because weight interactions are minimized. For concluding,
MLP training generally consists on one single phase, while RBF networks typically
needs two phases: first, basis functions are approximated by non supervised learning,
and then, output weights are fitted by supervised learning [9].

2.2.6 Functional model

As mentioned, the ANN models used in this thesis are single layer feedforward
networks. Those models consist of an input layer that receives the problem indepen-
dent variables, a hidden layer with different types of nodes available, and a linear
output layer with one or several output nodes.

2.2.6.1 Functional model for regression

An ANN used for regression tasks will have one output node (see example in
Figure 2.2). In this way, if we represent the set of coefficients associated to the ANN
as θ = {β, W}, the functional model associated to the output node is:

f (x,θ) = β0 +
M

∑
j=1

βj · φj(x, wj), (2.3)

where β = {β0, β1, . . . , βM} is the set of weights from hidden layer nodes to the
output node, β0 is the bias coefficient (or network bias), W = {w1, w2, ..., wM} the
set of coefficients associated to the hidden layer connections to the input layer, wj =

{wj0, wj1, ..., wjK} the values of the connections of node j of hidden layer and φj(x, wj)

the output of node j of the hidden layer. In this way, any of the previously presented
basis functions φj(x, wj) could be used (considering that PU units do not include
the bias). For RBFs, a common solution is to consider the centre of a node as cj =

{wj1, ..., wjK} and the radius as rj = wj0.

2.2.6.2 Functional model for classification

In a supervised classification problem, the purpose is to predict the class a pattern
belongs to based on a training procedure with input numerical variables which are
labelled according to its class. The measured (random observations) variables xk,
k = 1, 2, ..., K (K is the number of input dimensions) are grouped as an unique pattern
which should be classified in one of the Q classes based on these variables.

The, the training set is described as D = {(xi, ti); i = 1, 2, ..., N}, where xi =

(xi1, ..., xiK) is the input vector with input variables taking values in x ⊂ RK and
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Figure 2.2: ANN model with K input neurons, M nodes in the hidden layer and one output
node (typically used for regression tasks).
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Figure 2.3: ANN model with K input neurons, M nodes in the hidden layer and Q output
nodes (typically used for classification tasks, where Q is the number of classes).

ti represents the class of the i-th pattern. When applying ANNs for nominal clas-
sification, the most usual approach is to consider a 1-of-Q coding scheme [9], i.e.
ti = {ti1, . . . , tiQ}, tiq = 1 if xi corresponds to an example belonging to class Cq, and
tiq = 0 (or tiq = −1), otherwise. Then, an ANN for classification will have Q or Q− 1
output nodes (see example in Figure 2.3). We can represent the coefficient associated
to an ANN with θ = {θ1, ...,θQ}, then the functional model associated to each output
node is:

fq(x,θq) = βq0 +
M

∑
j=1

βqj · φj(x, wj), (2.4)

being 1 ≤ q ≤ Q, θq = {βq, W} the set of coefficients of the q output node, βq =

{βq0, βq1, ..., βqM} the weights of connections between hidden and output layer for
this node, W = {w1, w2, ..., wM} the set of coefficients associated to the hidden layer,
wj = {wj0, wj1, ..., wjK} the values of the connections of node j of hidden layer and
φj(x, wj) the output of node j of the hidden layer.

The purpose of the training process is to find an estimation of the ANN coefficients
θ̂ which allows the ANN to better classify unseen patterns. This is equivalent to
obtaining a decision function C : {Ω,θ} → {1, 2, ..., Q} for classifying individuals. In
other words, the Ω space provides a partition D1, D2, . . . , DQ, where Dq represents
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the q-th class, 1 ≤ q ≤ Q, and the patterns belonging to Dq will be assigned to class
q. An incorrect classification is done if C assigns a pattern to class j when its actual
class is q with q 6= j.

In order to value the performance of an ANN for classification (or other type of
classifiers), typically the Correct Classification Rate (CCR) is used:

CCR(θ̂) = ∑N
i=1 I(C(xi, θ̂) = yi)

N
(2.5)

where I(g) is a function that returns 1 if g is true and 0 otherwise, and C(xi, θ̂)
is the class that the network with coefficients θ̂ assigns to the pattern i. A good
classifier maximizes the CCR(θ̂) ratio or minimizes the corresponding error, this is,
(1− CCR(θ̂)).

2.3 support vector machines

The Support Vector Machines (SVM) [58] are perhaps the most common kernel
learning method for statistical pattern recognition. This technique (SVM and its vari-
ants and extensions) has been studied extensively and applied to several pattern
classification and approximation problems.

2.3.1 Support vector machines for binary classification

This section cover the basic ideas of SVM, that initially were formulated for binary
classification. The SVM can be extended to multi-class problems by means of different
mechanisms, for instance binary decompositions such as the OneVsOne scheme. This
topic is briefly explained in sections 3.3.2 and 3.3.2.1 in Chapter 3.

2.3.1.1 Hard-margin support vector machines

The basic idea behind SVMs is to separate the two different classes through the
optimal separating hyperplane which is specified by its normal vector w and the bias
term b, so if the training data is linearly separable, we could determine the separating
hyperplane as:

w · xT + b = 0, (2.6)

what yields the corresponding decision function:

if wT · x + b

{
> 0, yi = 1,

< 0, yi = −1,
(2.7)

where the labels for binary classification are in the set {−1, 1}.
Figure 2.4 shows different separating hyperplanes (H1, H2, H3) for addressing the

classification problem. As seen, the green hyperplane (H3) performs a trivial clas-
sification, unlike the red one (H2) and the blue one (H1). But when comparing the
red and the blue ones, both perform a perfect classification. However, the red hy-
perplane (H2) would be preferred because it maximizes the margin between classes.
This property makes it more robust when classifying future patterns.
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Figure 2.4: Different separating hyperplanes computed for the classification.

If we take into account that no training data satisfy wT · x + b = 0 (as they are
linearly separable), we could consider instead the following inequalities for the sake
of separability:

if wT · x + b

{
≥ 1, yi = 1,

≤ −1, yi = −1.
(2.8)

Then, Eq. 2.8 would be equivalent to:

yi(wT · x + b) ≥ 1 for i = {1, . . . , N}. (2.9)

The distance between the separating hyperplane and the training data sample near-
est to the hyperplane is called the margin. Now, consider determining the optimal
separating hyperplane. The distance from a training data sample x to the separat-
ing hyperplane is given by |D(x)|/||w||. Because the vector w is orthogonal to the
separating hyperplane, the line that goes through x and that is orthogonal to the
hyperplane is given by aw

||w|| + x, where |a| is the distance from x to the hyperplane.
Finally, to find the optimal separating hyperplane we need to find w with the

minimum distance norm that satisfies Eq. 2.9. Therefore, the optimal separating
hyperplane can be obtained by solving the following minimization problem for w
and b:

minimize: Q(w, b) =
1
2
||w||2 (2.10)

s.t.: yi(wTxi + b) ≥ 1 for i = {1, . . . , N}. (2.11)

In Eq. 2.10, ||w|| is the Euclidean norm (as it is the one used in this case), and the
square in the equation is added for avoiding an optimization problem with a square
root. The assumption of linear separability means that there exist some w and b
that satisfy Eq. 2.11 (this set of possible solutions for the problem are called feasible
solutions). By using the quadratic objective function with the inequality constraints,
even if the solutions are not unique, the value of the objective function will be unique.
Thus, non uniqueness is not a problem for support vector machines, and this is
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Figure 2.5: Graphical representations of the concepts large margin and support vectors.

precisely one of the advantages of support vector machines over neural networks,
which have numerous local minima.

As can be seen in Figure 2.5, we are seeking for the optimal separating hyperplane,
that is, the one which performs the larger separation for the training data. This figure
shows two decision functions that satisfy 2.9. Thus, there are an infinite number of
decision functions for that. The generalization ability will depend on the location
of this separating hyperplane. If we assume that there are no outliers in the data
and that the unknown test patterns obey the same distribution as that of the training
data, then it is well-known that the generalization ability is maximized by using this
optimal separating hyperplane.

The optimization constrained problem stated in Eq 2.10 and 2.11 could be con-
verted into the unconstrained problem:

Q(w, b, α) =
1
2

wTw−
N

∑
i=1

αi{yi(wTxi + b)− 1}, (2.12)

where α = (α1, . . . , αN)
T and αi are the non-negative Lagrange multipliers.

2.3.1.2 The kernel trick

Before continuing, we need to introduce the concept of kernel trick, which is essen-
tial for SVM techniques (and other kernel methods). Basically, the kernel trick allows
the computation of dot products in high-dimensional feature spaces, using simple
functions defined on pairs of input patterns. This trick allows the formulation of
nonlinear variants of any algorithm that can be cast in terms of dot products. The
basic motivation for working in high dimensional spaces is that it can help to linearly
separate data which is not linearly separable in the input space. An intuitive example
of how increasing the number of dimensions can allow linear separability of the data
is done in Figure 2.6.

The kernel concept was introduced into the field of pattern recognition by Aiz-
erman et al. [59] in the context of the method of potential functions. Although ne-
glected for many years, it was re-introduced into machine learning in the context of
large margin classifiers by Boser et al. [60], giving rise to the technique of support
vector machines. Since then, there has been considerable interest in this topic, both
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Figure 2.6: Example of how increasing the number of dimensions can allow linear separability
of the data. The example in the left side is not linearly separable. However, by
adding the square of the input variable as an extra dimension, the data can be
linearly separable.

in terms of theory and applications. One of the most significant developments has
been the extension of kernels to handle symbolic objects, thereby greatly expanding
the range of problems that can be addressed. The general idea is that, if we have
an algorithm formulated in such a way that the input vectors xi appear only in the
form of dot products between them, we can replace that dot product with some other
choice of kernel. For instance, the technique of kernel substitution can be applied to
principal component analysis (PCA) in order to develop a nonlinear variant of PCA
[61]. Other examples of kernel substitution include nearest-neighbor classifiers and
the kernel Fisher discriminant [62, 63].

When referring to a pattern classification algorithm as support vector machines or
discriminant analysis, the optimal separating or projection hyperplane is supposed
to maximize the accuracy. However, if the training data are not linearly separable,
the obtained classifier may not present a high accuracy, even when the hyperplane is
optimally determined.

Because of that, to enhance the linear separability, the original input space is
mapped into a higher dimensional dot-product space (also known as feature space)
by using a mapping function φ. Then, the linear decision function in the input space
is given by:

D(x) = wTφ(x) + b, (2.13)

where w determines the decision hyperplane and b is a bias term.
Figure 2.7 shows other toy example of a binary classification problem mapped

into feature space. In this example, we assume that the true decision boundary is an
ellipse in the input space. The task of the learning process is to estimate this boundary
based on empirical data consisting on training points in both classes (crosses and
circles, respectively). When mapped into feature space via the nonlinear mapping
function φ, the ellipse becomes a hyperplane. This is due to the fact that ellipses can
be written as linear equations in the entries of (z1, z2, z3). Therefore, in the feature



48 computational intelligence for classification and regression

space, the problem reduces to that of estimating a hyperplane from the mapped data
points.

complex in low dimensions simple in higher dimensions

separating 
hyperplane

feature 
map

Figure 2.7: Toy example of a binary classification problem mapped into feature space.

The development of kernel-based algorithms has resulted from a combination of
machine learning theory, optimization algorithms from operations research and ker-
nel techniques from mathematical analysis. These three ideas have spread far beyond
the original support vector machine algorithm: virtually every learning algorithm has
been redesigned to exploit the power of kernel methodology.

But the main idea and advantage of the kernel methods is that without knowing
the nonlinear feature mapping or the mapped feature space explicitly, we can work
on the feature space through kernel functions, as long as the problem formulation
depends only on the inner products between data points.

2.3.1.3 Nonlinear support vector machine

As said before, when data is not linearly separable, the kernel trick can be applied
(using a mapping function φ) so that the previous definitions should be redefined.
By doing this, the optimal separating hyperplane can be given as:

w · φ(x) + b = 0, (2.14)

what yields the corresponding decision function:

f (x) = ŷ = sgn (〈w · φ(x)〉+ b) ,

where ŷ = +1 if x belongs to the corresponding class and ŷ = −1 otherwise. And,
as done before, we should formulate the optimization problem and apply Lagrange
multipliers.

Figure 2.8 shows the decision function after applying the kernel trick and the se-
lected support vectors. This technique can be seen then as a linear parametric model
re-cast into an equivalent dual representation in which the predictions are based on
a linear combination of a kernel function evaluated at the training data points. The
parameters of the kernel model would be typically given by the solution of a convex
optimization problem, so there is a single, global optimum.

SVMs can also be thought as generalized perceptrons with a kernel that computes
the inner product on transformed input vectors φ(x), where φ(x) denote the feature
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Figure 2.8: Graphical representation of the separation bounds after applying the kernel trick
and the selected support vectors (source Bishop [9]).

vector x in a high dimensional reproducing kernel Hilbert space (RKHS) related to x
by a specific transformation [58]. All computations are done using the reproducing
kernel function only, which is defined as:

k(x, x′) = φ(x) · φ(x′),

where · denotes the inner product in the RKHS.

2.3.1.4 Soft-margin support vector machines

Up to this point, we have formulated the hard-margin support vector machine.
Beyond specifying nonlinear discriminants by kernels, another generalization has
been proposed which replaces hard margins by soft margins. This allows to handle
noise and pre-labeling errors, which often occur in practice. If we do not handle this
kind of problems, the hard-margin support vector machine can be unsolvable or it
can lead to overfitting (when using the nonlinear version). Because of that, the so
called slack-variables ξi are used to relax the hard-margin constraint [58]. Therefore,
to allow inseparability, the nonnegative slack variables are introduced into Eq. 2.9, so
that:

yi(wT · x + b) ≥ 1− ξi for i = {1, . . . , N}. (2.15)

By using the slack variables ξi, feasible solutions will always exist. For the pattern
xi, if 0 < ξi < 1 (as the case ξ1 in Figure 2.9), the data is very close to the decision
boundary but are still well-classified. But if ξi ≥ 1 (as the case ξ2 in Figure 2.9) the
data are misclassified by the optimal hyperplane.

So, to obtain the optimal hyperplane in which the number of training data that lie
into the margin or into the wrong side of the hyperplane is minimum, we need to
minimize:

Q(w) =
N

∑
i=1

θ(ξi),
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Figure 2.9: Graphical representation of the slack variables which allows the soft-margin clas-
sification.

where

θ(ξi) =

{
1 for ξi > 0

0 for ξi = 0
.

But this is a combinatorial optimization problem and difficult to solve. Instead, we
consider the following minimization problem:

min
w∈RK

L(w) =
1
2
‖w‖2 + C

N

∑
i=1

ξi, (2.16)

subject to:
yi · (w · φ(x) + b) ≥ 1− ξi, ξi ≥ 0, ∀i = {1, · · · , N}, (2.17)

where yi is the class of the input pattern xi, and constant C is a hyper-parameter that
should be optimally selected (typically by a grid search procedure). The correspond-
ing dual problem implies the use of Lagrange multipliers (αi). More details can be
found in [9].

The final classification rule can be expressed as follows:

ŷ(x) = sgn

(
N

∑
i=1

αiyik(x, xi) + b

)
, (2.18)

where αi represents the solution to the dual problem. Sparsity of the model is
achieved because only a subset points xj ∈ SV will result in nonzero Lagrange multi-
pliers (αj 6= 0), where SV is the set of support vectors, so the model can be rewritten
as:

ŷ(x) = sgn

 ∑
xj∈SV

αjyjk(x, xj) + b

 , (2.19)
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The example of Figure 2.8 also provides a geometrical insight into the origin of spar-
sity in the SVM. The maximum margin hyperplane is defined by the location of the
support vectors. Other data points can be moved around freely (so long as they re-
main outside the margin region) without changing the decision boundary, and so the
solution will be independent of such data points [9].

2.3.2 Support vector machines for regression

Support vector machines have been extended to regression problems resulting to
Support Vector Regression (SVR). This algorithm preserves the property of sparse-
ness. First we define the error function to minimize. In the linear regression case, the
following regularized error function is commonly used:

1
2

N

∑
i=1

(ŷ(xi)− yi)
2 +

λ

2
‖w‖2. (2.20)

In the case of SVR, the quadratic error function is replaced by an ε-insensitive error
function proposed by Vapnik [64] in order to obtain a sparse solution. This function
gives zero error if the absolute difference between the prediction ŷ(x) and the target
y is less than ε, where ε > 0. A simple example of this error function with a linear
cost associated with errors outside the insensitive region is (see Figure 2.10):

Eε(ŷ(x)− y) =

0, if |ŷ(x)− y| < ε

|ŷ(x)− y| − ε, otherwise.
(2.21)

0 z

E(z)

−ε ε

Figure 2.10: Plot of an ε-insensitive error function (red colour) in which the error increases
linearly with distance beyond the insensitive region [−ε,+ε]. For comparison, it
is also shown the quadratic error function (green colour) (source [9]).

Then, we minimize a regularized error function given by:

C
N

∑
i=1

Eε(ŷ(xi)− yi)−
1
2
‖w‖2. (2.22)

where ŷ(xi) is given by Eq. 2.13. By convention, the (inverse) regularization parame-
ter C appears in front of the error term. We can reformulate the optimization problem
by introducing slack variables but, in this case, we need two slack variables for each
data point xi: ξi ≥ 0 and ξ∗i ≥ 0, where ξi > 0 corresponds to a point for which target



52 computational intelligence for classification and regression

y

y + ε

y − ε

y(x)

x

ξ̂ > 0

ξ > 0

Figure 2.11: SVM regression model together with the ε-insensitive ’tube’ (source [9]). ξi and
ξ∗i (ξ and ξ̂ in the figure) are slack variables examples. Points above the ε-tube
have ξi > 0 and ξ∗i = 0, points below the ε-tube have ξi = 0 and ξ∗i > 0. Points
inside the ε-tube have ξi = ξ∗i = 0.

value yi > ŷ(xi) + ε, and ξ∗i > 0 corresponds to a point for which yi < ŷ(xi)− ε. An
illustration of the SVM model for regression is shown in Figure 2.11.

A target point lies inside the ε-tube if ŷi(xi)− ε ≤ yi ≤ yi + ε. After introducing
the slack variables, we allow points to lie outside the tube provided that the slack
variables are non-zero. The corresponding conditions are:

yi ≤ ŷi(xi) + ε + ξi,

yi ≥ ŷi(xi)− ε− ξ∗i .

Now the error function for support vector regression can be written as:

C
N

∑
i=1

(ξi + ξ∗i ) +
1
2
‖w‖2,

which must be minimized subject to the constraints ξi ≥ 0 and ξ∗i ≥ 0. The cor-
responding dual problem for minimizing this function implies using two kinds of
Lagrange multipliers (αi and α∗i ). More details can be found in [9].

Predictions of new inputs can be expressed in terms of the kernel function:

y(x) =
N

∑
i=1

(αi − α∗i )φ(x, xi) + b,

where αi and α∗i are the Lagrange multipliers.
Figure 2.12 shows the influence of the ε parameter in the ε-SVR model. This gives

us a hint about the relevance of this parameter that should be mandatory optimized
(typically by a grid search cross-validation procedure).

2.4 resources

There a numerous books and online resources that the reader can check in order to
extend its knowledge about artificial intelligence, machine learning, computational
intelligence, pattern recognition and other fields.
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Figure 2.12: Example of the influence of the ε parameter in the SVR model.

2.4.1 Books

The following books are essential literature for machine learning and computa-
tional intelligence:

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer.
2007. ISBN 978-0-387-31073-2. Website with complementary resources http:

//research.microsoft.com/en-us/um/people/cmbishop/prml/.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, 1st
edition, December 2001. ISBN 0262194759.

Agresti, A. Analysis of ordinal categorical data Wiley, 2010.

2.4.2 On-line resources

The following on-line resources are interesting for introducing many of the terms
included in machine learning and computational intelligence:

Machine learning course by Professor Andrew Ng (Stanford University) https:
//www.coursera.org/course/ml

Neural Networks for Machine Learning by Professor Geoffrey Hinton (Univer-
sity of Toronto) https://www.coursera.org/course/neuralnets

Artificial intelligence. (2013, May 13). In Wikipedia, The Free Encyclopedia.
Retrieved 10:19, May 14, 2013, from http://en.wikipedia.org/w/index.php?

title=Artificial_intelligence&oldid=554962155

http://research.microsoft.com/en-us/um/people/cmbishop/prml/
http://research.microsoft.com/en-us/um/people/cmbishop/prml/
https://www.coursera.org/course/ml
https://www.coursera.org/course/ml
https://www.coursera.org/course/neuralnets
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=554962155
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=554962155
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Machine learning. (2013, May 3). In Wikipedia, The Free Encyclopedia. Re-
trieved 10:22, May 14, 2013, from http://en.wikipedia.org/w/index.php?title=

Machine_learning&oldid=553372918

2.4.3 Free software

The following free software integrates several machine learning and statistical
methods:

Scikit-learn (http://scikit-learn.org) [65] has been used for generating some
of the graphics of this thesis, and presents a large collection of examples with
special attention to the influence of hyper-parameters in the methods behaviour.

Weka 3: Data Mining Software (http://www.cs.waikato.ac.nz/ml/weka/) [66] is
a collection of machine learning algorithms for data mining tasks. In this thesis
we have intensively used Weka for experimental comparisons as well as data
pre-processing.

http://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=553372918
http://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=553372918
http://scikit-learn.org
http://www.cs.waikato.ac.nz/ml/weka/


3
O R D I N A L R E G R E S S I O N

Summary. This chapter presents a review of the state of the art of ordinal
regression techniques, including a taxonomy proposal based on how the
models are constructed to take the order into account. Up to the authors
knowledge there are not similar reviews in this field.

Moreover, the chapter presents the mathematical notation generally used
for the rest of the thesis, with the exception of some sections.

Associated publications. Some portions of this chapter appeared in [19,
20, 40, 67]:

P.A. Gutiérrez, M. Pérez-Ortiz, F. Fernandez-Navarro, J. Sánchez-
Monedero, and C. Hervás-Martínez. An Experimental Study of Dif-
ferent Ordinal Regression Methods and Measures. In 7th Interna-
tional Conference on Hybrid Artificial Intelligence Systems, pages 296–
307, 2012.
http://dx.doi.org/10.1007/978-3-642-28931-6_29.

M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero, and
P.A. Gutiérrez. A Preliminary Study of Ordinal Metrics to Guide
a Multi-Objective Evolutionary Algorithm. In Proceedings of the 11th
International Conference on Intelligent Systems Design and Applications
(ISDA 2011), pages 1176–1181, Cordoba, Spain, 2011.
http://dx.doi.org/10.1109/ISDA.2011.6121818

M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero and P.A.
Gutiérrez. Metrics to guide a multi-objective evolutionary algorithm
for ordinal classification. Neurocomputing. 2013 (Accepted)
Impact factor (JCR2012): 1.634

Pedro Antonio Gutiérrez, María Pérez-Ortiz, J. Sánchez-Monedero,
and C. Hervás-Martínez. Estudio comparativo de distintos métodos
de umbral en regresión ordinal. In IX Congreso Español de Metaheurís-
ticas, Algoritmos Evolutivos y Bioinspirados - MAEB 2013, 2013.

3.1 introduction

Learning to classify or to predict numerical values from prelabelled patterns is one
of the central research topics in machine learning and data mining [68, 69]. However,
less attention has been paid to ordinal regression (also called ordinal classification)
problems, where the labels of the target variable exhibit a natural ordering.
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For example, retrieving the weather prediction example of the introduction, the
following ordinal scale {Very cold, Cold, Mild, Hot, Very hot} represents an ordinal re-
gression problem since there is a natural order between classes: Very cold ≺ Cold ≺
Mild ≺ Hot ≺ Very hot. Then a sample vector associated with class label Mild has a
higher label (or warmer temperature) than another from the Cold class, but Hot class
is warmer than both. Thereafter, class labels are embedded with order information.

Ordinal regression problems present two issues to be addressed: misclassification
costs are not the same for different errors (it is straightforward to think that predict-
ing class Hot when the real class is Cold represents a more severe error than that
associated with a Very cold prediction) and the ordering information can be used to
construct more accurate models. Thus, specialized measures are needed for evaluat-
ing ordinal classifiers performance [18][19].

A further distinction is made by Anderson [70], which differentiates two major
types of ordinal categorical variables, “grouped continuous variables” and “assessed
ordered categorical variables”. The first one is a discretized version of an underlying
continuous variable, which could be observed itself, e.g. if age or income are only
given in categories. The second one covers those variables where an expert or user
provides his judgement on the grade of the ordered categorical variable. However,
ordering is meaningful for both cases.

Ordinal regression problems are very common in many research areas, and they
have been frequently considered as standard nominal problems which can lead to
non-optimal solutions. Indeed, ordinal regression problems are between classifica-
tion and regression, presenting some similarities and differences. Some of the fields
where ordinal regression is found are medical research [4, 71–77], age estimation [78],
brain computer interface [79], credit rating [6, 80, 81], econometric modelling [82],
face recognition [83–85], wind speed prediction [5], facility layout design [86], social
sciences [87], and more. All these works (which will be further analysed later in
this chapter) are examples of application of specifically designed ordinal regression
models, where the ordering consideration improves their performance with respect
to their nominal counterparts. Additionally, a great research community is working
in the Information Retrieval (IR) field motivated by the huge amount of data avail-
able [88]. Several works of ordinal regression have been motivated by or applied
to IR. However, the two intrinsic properties of IR measures for ranking (query level
and position based) cannot be sufficiently considered when using ordinal regression
methods [88].

In statistics, ordinal data were firstly studied by using a link function able to model
the underlying probability for generating ordinal labels [70]. The field of ordinal
regression has evolved in the last decade, with noteworthy research progress made
in supervised learning [89], from Support Vector Machines formulations [33, 37] to
Gaussian processes [41] or discriminant learning [90], to name a few. However, to
our knowledge, the methods have not yet been categorized in a general taxonomy,
which is essential for further research and for identifying the developments made
and the present state of existing methods. This chapter contributes a review of the
state-of-the-art of ordinal regression and a taxonomy proposal to better organize the
advances in this field.

Strongly related to ordinal regression, multicriteria decision analysis (MCDA) is
an important field within operational research and is concerned with structuring and
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solving decision and planning problems involving multiple criteria. These methods
are able to support decision makers facing such problems. Typically, there does
not exist a unique optimal solution, and decision maker’s preferences are used to
differentiate between solutions.

While both classification and sorting refer to the assignment of a set of alternatives
into predefined groups, they differ with respect to the way that the groups are defined
[91]: classification refers to the case where the groups are defined in a nominal way,
and sorting refers to the case where the groups are defined starting from the most
preferred alternatives and going on to the least preferred ones. A recent literature
review [92] of the treatment of ordinal data in the field of MCDA includes the most
significant advances, as well as connections with artificial intelligence. This thesis
chapter focuses only on artificial intelligence approaches, so we refer to [92] for a
detailed review of MCDA methods.

Recently in [17], ordinal meta-models were compared with respect to their nomi-
nal counterparts to check their ability to exploit ordinal information. The work con-
cludes that such meta-methods do exploit ordinal information and may yield better
performance. Another recent study [93] argues that ordinal classifiers may not have
meaningful statistical advantage over corresponding non-ordinal counterparts, based
on accuracy and Cohen’s Kappa statistic [94]. Regarding both issues, experimental
results in this thesis reveals that specifically designed ordinal regression methods can
further improve the results with respect to meta-model approaches and with respect
to nominal classifiers (see experimental results in Section 5.4.7 in Chapter 5, Section
6.3.4 in Chapter 6 and Section 7.3.5 in Chapter 7). There are statistical significant
differences when using measures which take the order of the categories into account,
which is the case of the Averaged Mean Absolute Error (AMAE). The aforementioned
review paper submitted to a journal performs more extensive experiments including
more methods and datasets, and therefore it enforces these preliminary conclusions.

3.2 notation and nature of the problem

3.2.1 Problem definition

The ordinal regression problem consists on predicting the label y of an input vector
x, where x ∈ X ⊆ RK and y ∈ Y = {C1, C2, . . . , CQ}, i.e. x is in a K-dimensional input
space and y is in a label space of Q different labels corresponding to the categories.
The objective is to find a classification rule or function f : X → Y to predict the labels
of new patterns, given a training set of N points, D = {(xi, yi), 1 ≤ i ≤ N}. All these
considerations are common with standard nominal classification, but a natural label
ordering is included for ordinal regression, C1 ≺ C2 ≺ . . . ≺ CQ, where ≺ is an order
relation given by the nature of the classification problem. Many ordinal regression
measures and algorithms consider the rank of the label, i.e. the position of the label
in the ordinal scale, which can be expressed by the function O(·), in such a way that
O(Cq) = q, 1 ≤ q ≤ Q.

The difference between this setting and other related ones is now established. The
assumption of an order between class labels makes that two different elements of
Y can be always compared by using the relation ≺, which is not possible under
the nominal classification setting. If compared to regression (where y ∈ R), it is
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true that real values in R can be ordered by the standard < operator, but labels in
ordinal regression (y ∈ Y) do not carry metric information, so the category serves as
a qualitative indication of the pattern rather than a quantitative one.

3.2.2 Ordinal regression in the context of ranking and sorting

Although ordinal regression has been paid attention recently, the amount of re-
lated research topics is worth to be mentioned. First, it is important to remark the
differences between ordinal regression and other related ranking problems. There
are three terms to be clarified:

Ranking generally refers to those problems where the algorithm is given a set
of ordered labels [95], with one label for each pattern, and the objective is to
learn a rule that is able to rank patterns during the test phase by using this
discrete set of labels. The induced ordering should be partial with respect to
the patterns, in the sense that ties are allowed (two patterns with the same label).
This rule should be able to obtain a good ranking, but not to classify patterns in
the correct class. For example, if the labels predicted by a classifier are shifted
one category (in the ordinal scale) with respect to the actual ones, the classifier
will still be a perfect ranker.

Another term, sorting [95] is referred to the problem where the algorithm is
given a total order for the training dataset and the objective is to rank new sets
during the test phase. As we can see, this is equivalent to a ranking problem
where the size of the label set is equal to the number of training points, Q = N.
Ties are not allowed for the prediction. Again, the interest is in learning a
function that can give a total ordering of the patterns instead of a concrete
label.

The multipartite ranking problem (which is a generalization of the well know
bipartite ranking one) deserves special attention. This kind of problem can be
seen as an intermediate point between ranking and sorting. It is similar to
ranking because training patterns are labelled with one of Q ordered ratings
(Q = 2 for bipartite ranking), but here the goal is to learn from them a ranking
function able to induce a total order in accordance with the given training rat-
ings [96–99], which is similar to the sorting setting. The relationship between
multipartite ranking and ordinal classification is discussed in [99]. An ordinal
regression classifier can be used, of course, as a ranking function by interpret-
ing the class labels as scores. However, this type of scoring will produce a large
number of ties (which is not desirable for multipartite ranking). On the other
hand, a multipartite ranking function f (·) can be turned into an ordinal classi-
fier by deriving thresholds to define an interval for each class, but how to find
the optimal thresholds is an open issue.

A more general term which is learning to rank, gathering different methods in which
the goal is to automatically construct a ranking model from training data [88]. In this
context, we refer now to the work of Lin and Li [31], which establishes different fam-
ilies of ranking model structures: pointwise or itemwise ranking (where the relevance
of an input vector x is predicted by using either real-valued scores or ordinal-valued
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labels), pairwise ranking (where the relative order between two input vectors x and x′

tries to be predicted, i.e. the local comparison nature of ranking, which can be easily
cast to binary classification) and listwise ranking (where the algorithms try to order
a finite set of patterns S = {x1, x2, . . . , xN} by minimizing the inconsistency between
the predicted permutation and the training permutation [88]). Both pairwise and
listwise structures have serious problems of scalability with the size of the training
dataset, and many works focus on trying to alleviate them [24, 100, 101]. However, in
some cases, this can result in the loss of data information [31].

In summary, ordinal regression is a pointwise approach to classify data, where the
labels exhibit a natural order. It is related to the problems of ranking, sorting and
multipartite ranking, but, during the test phase, its objective is to obtain correct labels
or ones as close as possible to the correct ones, not a correct relative partial order of
the patterns (ranking), a total order of patterns in accordance to the order of the
training set (sorting) or a total order in accordance to the training labels (multipartite
ranking).

3.2.3 Advanced related topics

Additionally, there are other topics related to ordinal regression which have re-
cently been studied:

Monotonic classification [102–104] is a special class of ordinal classification task,
where there are monotonicity constraints between features and decision classes,
i.e. x � x′ → f (x) ≥ f (x′) [105], where x � x′ means that x dominates x′, i.e.
xk ≥ x′k, 1 ≤ k ≤ K. Monotonic classification tasks are very common in real-
world life [103] (for example, consider the case where employers must select
their employees based on their education and experience), where monotonicity
may also be an important model requirement for justifying the decision made
and it can be required both for binary or multiclass classifiers. This kind of prob-
lem has been approached, for example, by decision trees [103, 106] and rough
set theory [104]. Feature selection has also been evaluated in monotonic clas-
sification [102], and a statistical framework for classification with monotonicity
constraints has been recently proposed [105].

A recent work is concerned with transductive ordinal regression [89], where a
SVM model is derived to learn from a set of labelled and unlabelled patterns.

Uncertainty has been included in ordinal regression models in two different
ways. Nondeterministic ordinal classifiers (defined as those allowed to predict
more than one label for some entries of an input space) are considered in [107].
In [35] a kernel model is proposed for those ordinal problems where partial
class memberships probabilities are available instead of crisp labels.

One step forward [108] considers those problems where the prediction labels
follow a circular order (e.g. directional predictions).

All these works are outside the scope of this thesis.
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3.2.4 Ordinal regression performance metrics

In this thesis, we mainly utilize four evaluation metrics quantifying the accuracy
of N predicted ordinal labels for a given dataset {ŷ1, ŷ2, . . . , ŷN}, with respect to the
true targets {y1, y2, . . . , yN}:

Acc: the accuracy (Acc), also known as Correct Classification Rate, is the rate of
correctly classified patterns:

Acc =
1
N

N

∑
i=1

Jŷi = yiK,

where yi is the true label, ŷi is the predicted label and JcK is the indicator func-
tion, being equal to 1 if c is true, and to 0 otherwise. Acc values range from 0 to
1 and they represent a global performance on the classification task. Although
Acc is widely used in classification tasks, is it not suitable for some type of
problems, such as imbalanced datasets [109] (very different number of patterns
for each class) or ordinal datasets [23]. The Acc can be expressed as an error,
the Mean Zero-one Error (MZE), which is the fraction of incorrect predictions
on individual samples:

MZE =
1
N

N

∑
i=1

I (ŷi 6= yi) .

On the other hand, there are other product-moment ordinal metrics specifically
used in ordinal classification:

MAE: The Mean Absolute Error (MAE) is the average absolute deviation of the
predicted labels from the true labels [23]:

MAE =
1
N

N

∑
i=1

e(xi),

where e(xi) = |O(yi)−O(ŷi)|. The MAE values range from 0 to Q− 1. Since
Acc does not reflect the category order, MAE is typically used in the ordinal
classification literature together with Acc [18, 30, 33, 41, 110, 111]. However,
neither Acc nor MAE are suitable for problems with imbalanced classes. This
is rectified e.g. in the average MAE (AMAE) [23] measuring the mean perfor-
mance of the classifier across all classes.

AMAE: This measure evaluates the mean of the MAEs across classes [23]. It
has been proposed as a more robust alternative to MAE for imbalanced datasets
– a very common situation in ordinal classification, where extreme classes (as-
sociated with rare situations) tend to be less populated. AMAE is defined as:

AMAE =
1
Q

Q

∑
j=1

MAEj =
1
Q

Q

∑
j=1

1
nj

nj

∑
i=1

e(xi),

where AMAE values range from 0 to Q− 1 and nj is the number of patterns in
class j.
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Finally association metrics are presented, which are also used in ordinal classifica-
tion:

rS: The Spearman’s rank correlation coefficient is a non-parametric measure of
statistical dependence between two variables [112]:

rS =
∑N

i=1 (O(yi)−O(y))(O(ŷi)−O(ŷ))√
∑N

i=1 (O(yi)−O(y))2
√

∑N
i=1 (O(ŷi)−O(ŷ))2

,

where O(y) and O(ŷ) are the average of O(yi) and O(ŷi), i = 1, ..., N, respec-
tively. Recall that O(Cq) = q. rS values range from −1 to 1.

WKappa: The Weighted Kappa is a modified version of the Kappa statistic
calculated to allow assigning different weights to different levels of aggregation
between two variables [113]:

WKappa =
po(w) − pe(w)

1− pe(w)
,

where

po(w) =
1
N

Q

∑
q=1

Q

∑
j=1

wqjnqj,

and

pe(w) =
1

N2

Q

∑
q=1

Q

∑
j=1

wqjnq•n•j,

where the weight wqj = |q− j| quantifies the degree of discrepancy between the
true (q) and the predicted (j) categories, and WKappa values range from −1 to
1.

τb: The Kendall’s τb is a statistic used to measure the association between two
measured quantities. Specifically, it is a measure of the rank correlation [114]:

τb =
∑N

i,j=1 ĉijcij√
∑N

i,j=1 ĉ2
ij ∑N

i,j=1 c2
ij

,

where ĉij is +1 if ŷi is greater than (in the ordinal scale) ŷj, 0 if ŷi and ŷj are the
same, and −1 if ŷi is lower than ŷj, and the same for cij (using yi and yj). τb
values range from −1 (maximum disagreement between the prediction and the
true label), to 0 (no correlation between them) and to 1 (maximum agreement).
τb has been advocated as a better measure for ordinal variables because it is
independent of the values used to represent classes [115] since it works directly
on the set of pairs corresponding to different observations.

While the τb metric is independent on the values chosen for the ranks that represent
the classes, MAE, AMAE, rS and WKappa depend on the distance between ranking
of two consecutive classes. However, for the association metrics ( rS, WKappa and τb),
one may argue that shifting the predictions one class would will keep the same mea-
sure value whereas the quality of the ordinal classification is lower. However, note
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Figure 3.1: Proposed taxonomy for ordinal regression methods

that since there is a finite number of classes, shifting all predictions by one class will
have detrimental effect in the boundary classes and so would substantially decrease
the performance, even as measured by the association metrics. As a consequence,
the association metrics are still an interesting measure for ordinal classification but
should be used in conjunction with other ones.

3.3 an ordinal regression taxonomy

In this section, a taxonomy of ordinal regression methods is proposed. With this
purpose, we firstly review what have been referred to as naïve approaches, in the
sense that the model is obtained by using other standard machine learning predic-
tion algorithms (e.g. nominal classification or standard regression). Then, binary
decomposition approaches are reviewed, the main idea being to decompose the or-
dinal problem into several binary ones, which are separately solved by multiple or
a single model. The next group will include the set of methods known as threshold
models, which are based on the general idea of approximating a real value predictor
and then dividing the real line into different intervals. Finally, augmented binary clas-
sification techniques decompose the ordinal regression problem into a single binary
classification one, but extending the dataset with new input variables and weights.
The taxonomy proposed is given in Figure 3.1.

3.3.1 Naïve approaches

Ordinal regression problems can be easily simplified into other standard problems,
which generally involves making some assumptions. As will be later discussed, these
methods can be very competitive given that, even though these assumptions may not
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hold, the methods inherit the performance of very well-tuned models. The following
methods can be found in the literature:

3.3.1.1 Regression

One very simple idea to tackle ordinal regression is to cast all the different labels
{C1, C2, . . . , CQ} into real values {r1, r2, . . . , rQ} [116], where ri ∈ R, and then to
apply standard regression techniques [9, 117, 118] (least square regression, neural
networks, support vector regression. . . ). Typically, the value of each label is related
to its position in the ordinal scale, i.e. ri = i. For example, Kramer et al. [25, 119] map
the ordinal scale by assigning numerical values, applying a regression tree model and
rounding the results for assigning the class when predicting new values. They also
evaluate the possibility of using the median, the mode, or the rounded mean of all
the patterns in the leaves of the tree. The main problem with these approaches is
that real values used for the labels may hinder the performance of the regression
algorithms, and there is no principled way of deciding the value a label should have
without prior information about the problem, since the distance between classes is
unknown. Moreover, regression learners will be more sensitive to the representation
of the label rather than its ordering [120].

3.3.1.2 Nominal classification

Ordinal classification problems are usually considered from a standard nominal
perspective (e.g. by using standard support vector classifiers [121]), and the order be-
tween classes is simply ignored. Some researchers routinely apply nominal response
data analysis methods (yielding results invariant to the permutation of the categories)
to both nominal and ordinal target variables alike because they are both categorical
[122]. Nominal classification algorithms completely ignore the ordering of the la-
bels by treating them as independent classes, thus requiring more training data in
general [120]. The Support Vector Machines paradigm is perhaps the most common
kernel learning method for statistical pattern recognition. Beyond the application of
the kernel trick to allow nonlinear decision discriminants, and the slack-variables to
avoid inseparability, relax the constraints and handle noisy data, the original binary
SVM had to be reformulated to deal with multiclass problems [123]. The study in
this chapter compares two of the most commonly used approaches for solving this
problem: the OneVsAll and the pairwise (or OneVsOne) formulations.

3.3.1.3 Cost sensitive classification

A more advanced method that can be considered in this group is cost-sensitive
learning, which is indeed closely related to ordinal regression. Many real-world ap-
plications of machine learning and data mining require the evaluation of the learned
system with different costs for different types of misclassification errors [124, 125] (in
fact, cost-sensitive classification can be used to express any finite-choice and bounded-
loss machine learning problem [126]). This is the case with ordinal regression, al-
though the exact costs for misclassification are generally unknown. The cost of mis-
classifications can be forced to be different depending on the distance between real
and predicted classes, in the ordinal scale. The work of Kotsiantis and Pintelas [26]
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Table 3.1: Example of different cost matrices.

Zero-one Absolute cost Quadratic cost

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0





0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0





0 1 4 9 16

1 0 1 4 9

4 1 0 1 4

9 4 1 0 1

16 9 4 1 0



considers cost-sensitive classification to solve ordinal regression, by using absolute
costs (i.e. the element cij of the cost matrix C is equal to the difference in number of
categories, cij = |i− j|). C4.5, PART and 3-NN algorithms are shown to obtain better
MAE values when cost matrices are used, without harming (in fact even improving)
accuracy [26]. Two cost matrices for a five class problem are given in Table 3.1, includ-
ing the absolute cost matrix and that of quadratic cost (cij = |i− j|2), together with
a zero-one cost matrix, which is the one assumed in nominal classification. Other
possibilities are to choose asymmetric costs or non-convex two-Gaussian cost [31].
Again, the main problem is that, without a priori knowledge of the problem, it is not
clear which cost matrix is more suitable for the problem.

3.3.2 Binary decompositions

This group includes all those methods which are based on decomposing the or-
dinal target variable into several binary ones, which are then estimated by a single
or multiple models. A summary of the decompositions is given in Table 3.2, where
five classes are considered, each method generating a different decomposition ma-
trix. Columns of the matrix correspond to the binary subproblems and rows to the
role of each class for each subproblem. The symbol + is associated to the positive
class and the symbol − to the negative one. If the class is not used in the specific
binary subproblem, no symbol is included in the corresponding position. OneVsAll
and OveVsOne formulations are not related to ordinal regression, but they have been
included for comparison purposes. Note the high number of binary decompositions
needed by OneVsOne (all the 2-combinations taken from Q, in this case, 10 combina-
tions).

Two main issues have to be taken into account when analysing the methods herein
presented:

Some of them are based on the idea of training a different model for each
subproblem (multiple model approaches), while others learn one single model for
all the subproblems.

Apart from defining how to decompose the problem, it is important to define
a rule for predicting new patterns, once the decision values for each subprob-
lem are obtained. For the prediction phase, the corresponding binary codes of
Table 3.2 (rows representing each class) can be considered as part of the error-
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Table 3.2: Binary decompositions for a 5-class ordinal problem.

Nominal decompositions

OneVsAll OneVsOne

+,−,−,−,−
−,+,−,−,−
−,−,+,−,−
−,−,−,+,−
−,−,−,−,+





−,−,−,−, , , , , , ,

+, , , ,−,−,−, , , ,

,+, , ,+, , ,−,−, ,

, ,+, , ,+, ,+, ,−,

, , ,+, , ,+, ,+,+,


Ordinal decompositions

OrderedPartitions OneVsNext OneVsFollowers OneVsPrevious

−,−,−,−
+,−,−,−
+,+,−,−
+,+,+,−
+,+,+,+





−, , ,

+,−, ,

,+,−,

, ,+,−
, , ,+





−, , ,

+,−, ,

+,+,−,

+,+,+,−
+,+,+,+





+,+,+,+

+,+,+,−
+,+,−,

+,−, ,

−, , ,



correcting output codes framework [127], considering that the final predicted
class is the one closest to the predicted code form by all binary responses.

Taking the first criterion into account, we have divided binary decomposition algo-
rithms into multiple model and single model approaches.

3.3.2.1 Multiple model approaches

Ordinal information gives us the possibility of comparing the different labels. For
a given rank k, a direct question can be the following, “is the label of pattern x
greater than k?” [31]. This question is clearly a binary classification problem, so
ordinal classification can be solved by considering each binary classification problem
independently and combining the binary outputs into a label, which is the approach
followed by Frank and Hall in [27] (this decomposition is called OrderedPartitions in
Table 3.2). In their work, Frank and Hall considered C4.5 as the binary classifier
and the decision of the different binary classifiers were combined by using associated
probabilities pq = P(y � Cq|x), 1 ≤ q ≤ Q− 1:

P(y = C1|x) ≈ 1− p1,

P(y = Cq|x) ≈ pq−1 − pq, 2 ≤ q ≤ Q− 1,

P(y = CQ|x) ≈ pQ−1.

Note that this approach may lead to negative probability estimates [29], given that bi-
nary classifiers are independently learned and nothing assures that pq−1 < pq. When
there is no need for proper probability estimations, prediction can be done by select-
ing the maximum.
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In the work of Waegeman et al. [28], this framework is used but explicit weights
over the patterns of each binary system are imposed, in such a way that errors on
training objects are penalized proportionally to the absolute difference between their
rank and k. Additionally, labels for the test set are obtained by combining the es-
timated outcomes yq of all the Q − 1 binary classifiers. The interpretation of these
binary outcomes yqi ∈ {+1,−1}, 1 ≤ q ≤ (Q − 1), 1 ≤ i ≤ N, intuitively leads
to yi � Cq if yqi = 1. In this way, the rank k is assigned to pattern xi so that
yqi = −1, ∀q < k, and yqi = 1, ∀q ≥ k. As stated by the authors, this strategy can
result in ambiguities for some test patterns, and they should be solved by using tech-
niques similar to those considered for multiclass classification. A very similar scheme
to [28] is proposed in [78], where the weights are obtained slightly differently, and
different kernels are used for the different binary classification sub-problems. The
promising accuracy obtained can be related to the selection of different kernels for
each subproblem. Finally, the OrderedPartitions decomposition is also followed by the
Bayesian hierarchical experts approach in [128].

Other binary decompositions can be found in the literature. The cascade linear
utility model is used in [129], which considers Q− 1 projections, in such a way that
projection q separates classes C1 ∪ . . . ∪ CQ−q−1 from class CQ−q, i.e. one class is elim-
inated for each projection (this is the OneVsPrevious decomposition in Table 3.2). The
predictions are then combined by using a union utility function. Finally, binary sup-
port vector machines were also applied to ordinal regression [6] by making use of the
ordinal pairwise partitioning approach [80]. This approach is composed of four dif-
ferent reformulations of the classical OneVsOne and OneVsAll paradigms. OneVsNext
approach considers that each binary classifier q separates class Cq from class Cq+1,
and OneVsFollowers (which is similar to the OneVsPrevious approach in [129] but in
the opposite direction) constructs each binary classifier q for the task of separating
class Cq from classes Cq+1 ∪ . . . ∪ CQ. The prediction phase is then approached by
examining each binary classifier in order, so that, if a model predicts that the pattern
is in the class which is isolated (not grouped with other classes), then this is the class
predicted by the group of classifiers. If not, the pattern is evaluated by the next classi-
fier, until one class is predicted. This can be done in a forward manner (starting with
the first model and going forwards) or in a backward manner (starting with the last
one and going backwards), both possibilities being evaluated in [6]. Without prior
knowledge of the problem, it is not possible to know which one of these strategies
(backwards or forwards) performs better.

Finally, another possibility [77] is to derive a classifier for each class but separating
the labels into groups of three classes (instead of only two) for intermediate subtasks
(labels lower than Cq, label Cq, and labels higher than Cq), or two classes for the
extreme ones. The objective is to incorporate the order information in the subclas-
sification tasks. Although the decomposition for intermediate classes is not binary
but ternary, this approach has been included in this group because its motivation is
similar to all the aforementioned.

3.3.2.2 Single model approaches

Among non-parametric models, one appealing property of neural networks is that
they can handle multiple responses in a seamless fashion [47]. Usually, as many
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output neurons as the number of target variables are included in the output layer
and targets are presented to the network in the form of vectors ti, 1 ≤ i ≤ N (see
Section 2.2.6 in Chapter 2). When applied to nominal classification, the most usual
approach is to consider a 1-of-Q coding scheme [9], i.e. ti = {ti1, . . . , tiQ}, tiq = 1 if
xi corresponds to an example belonging to class Cq, and tiq = 0 (or tiq = −1), oth-
erwise. In the ordinal regression framework, one can take the ordering information
into account to design specific ordinal target coding schemes, which can improve the
performance of the methods. Indeed, all the decompositions in Table 3.2 can be used
to train neural networks, by taking each row as the code for the target class, ti, and
a single model will be obtained for all related subproblems (considering that each
output neuron is solving each subproblem). This can be done by assigning a number
to the different symbols in Table 3.2. For sigmoidal output neurons, a 1 is assigned
for positive symbols (+) and a 0 for negative ones (−). For hyperbolic functions,
negative symbols are represented with a −1 and positive ones also with a 1. Those
decompositions where a class is not involved should be treated as a “does not matter”
condition where, whatever the output response, no error signal should be generated
[130]. Again, how to perform the predictions after training the network is an open
issue, and different proposals have been made.

A generalization of ordinal perceptron learning [38] in neural networks was pro-
posed in [131]. The method is based on two main ideas: 1) the targets are coded
using the OrderedPartitions approach; and 2) instead of using the softmax function [9]
for the output nodes, a standard sigmoid function is imposed for each output node,
and the category assigned to a pattern is equal to the index previous to that of the
first output node whose value is smaller than a predefined threshold T (e.g., T = 0.5),
or when no nodes are left. This method ignores inconsistencies in the predictions (i.e.
a sigmoid with value higher than T after the index selected).

Extreme Learning Machines (ELMs) are single-layer feed-forward neural networks,
where the hidden layer does not need to be tuned given that corresponding weights
are randomly assigned. ELMs have demonstrated good scalability and generalization
performance with a faster learning speed when compared to other models such as
SVMs [132]. They have been adapted to ordinal regression [133], and one of the pro-
posed ordinal ELMs also considers OrderedPartitions targets. Additionally, multiple
models are also trained using the OneVsOne and the OrderedPartitions approaches. For
the prediction phase, the loss-based decoding approach [127] is utilized, i.e. the cho-
sen label is that which minimizes the exponential loss, k = arg min1≤q≤Q dL

(
Mq, y(x)

)
,

where Mq is the code associated to class q (q-th row of the coding matrix), y(x) is the
vector of predictions, and dL

(
Mq, y(x)

)
is the exponential loss function:

dL
(
Mq, y(x)

)
=

Q

∑
i=1

exp
(
−Mqi · yi(x)

)
.

The values of the vector y(x) are assumed to be in the [−1,+1] range, and those of
Mq in the set {−1, 0,+1}. The single ELM was found to obtain slightly better gen-
eralization results and also to report the lowest computational time [133]. The ELM
algorithm is covered with more details in Chapter 4, and its evolutionary version is
extended in several ways for dealing with imbalance issues also in Chapter 4. More-
over the ordinal ELM is extended in Section 5.2 to consider the order in the training
algorithm.
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Costa [130] followed a probabilistic framework to propose another neural network
architecture able to exploit the ordinal nature of the data. The proposal is based
on the joint prediction of constrained concurrent events, which can be turned into
a classification task defined in a suitable space through a “partitive approach”. An
appropriate entropic loss is derived for P(Y), i.e. the set of subsets of Y , where Y is
a set of Q elementary events. A probability for each possible subset should be esti-
mated, leading to a total of 2Q probabilities. However, depending on the classification
problem, not all possibilities should be examined. For example, this is simplified for
random variables taking values in finite ordered sets (i.e. ordinal regression), as well
as in the case of independent boolean random variables (i.e. nominal classification).
To adapt neural networks to the ordinal case structure, targets are reformulated fol-
lowing the OneVsFollowers approach and the prediction phase is now accomplished
by considering that, under its constrained entropic loss formulation, the output of
the q-th output neuron estimates the probability that q and q− 1 events are both true.
This methodology was further evaluated and compared in other works [18, 29, 134].

Although all these neural network approaches consist of a single model, they are
trained independently in the sense that the output of one neuron does not depend
on the others (only on common nonlinear transformations of the inputs). That is the
reason why we have included them into the category of binary decompositions.

3.3.3 Threshold models

Often, in the ordinal regression paradigm, it is natural to assume that an unob-
served continuous variable underlies the ordinal response variable. Such a variable
is called a latent variable. Latent variable models or threshold models are probably
the most important type of ordinal regression models [33, 35, 135, 136]. These mod-
els consider the ordinal scale as the result of coarse measurements of a continuous
variable, called the latent variable. It is typically assumed that the latent variable is
difficult to measure or cannot be observed itself [35]. The threshold model can be
represented with the following general expression:

f (x,θ) =


C1, if g(x) ≤ θ1,

C2, if θ1 < g(x) ≤ θ2,
...

CQ, if g(x) > θQ−1,

(3.1)

where g : X → R is the function that projects data space onto the 1-dimensional
latent space Z ⊆ R and θ1 ≤ θ2 . . . ≤ θQ−1 are the thresholds that divide the space
into ordered intervals corresponding to the classes.

Then, these methodologies estimate:

A function f (x) that tries to predict the nature of those underlying real-valued
outcomes.

A set of thresholds θ = (θ1, θ2, . . . , θQ−1) ∈ RQ−1 to represent intervals in the
range of f (x), which must satisfy the constraints θ1 ≤ θ2 ≤ . . . ≤ θQ−1.

Generally, these models simultaneously estimate a projection function (similar to the
ranking function to be learned by multipartite algorithms) and the best thresholds
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for the ordinal classification task considered. However some methods, such as the
proposed in Chapter 5 do not include the thresholds in the optimization problem,
but they are adjusted and fixed independently.

3.3.3.1 Discriminative Models

Discriminative models estimate directly the posterior P(y|x), or learn a function to
map the input x to class labels.

cumulative link models . Arising from a statistical background, the Propor-
tional Odds Model (POM) is one of the first models specifically designed for ordinal
regression [36], dated back to 1980. It is a member of a wider family of models rec-
ognized as Cumulative Link Models (CLMs) [137]. In order to extend binary logistic
regression to ordinal regression, CLMs predict probabilities of group of contiguous
categories, taking the ordinal scale into account. In this way, cumulative probabilities
P(y � Cj|x) are estimated, which can be directly related to standard probabilities:

P(y � Cq|x) = P(y = C1|x) + . . . + P(y = Cq|x),
P(y = Cq|x) = P(y � Cq|x)− P(y � Cq−1|x),

with 1 ≤ q ≤ Q and considering by definition that P(y � CQ|x) = 1. Stochastic
ordering of space X is satisfied by the following general model form [37]:

g−1 (P(y � Cq|x)
)
= θq −wTx, 1 ≤ q ≤ Q,

where g−1 : [0, 1] → (−∞,+∞) is a monotonic function often referred to as the
inverse link function and θq is the threshold defined for class Cq. This model is
clearly inspired by the latent variable motivation, considering that f (x) = wTx is
a linear transformation. A decision rule f : X → Y is not fitted directly. If the
ordinal response is a coarsely measured latent continuous variable f (x), label Cq in
the training set is observed if and only if f (x) ∈ [θq−1, θq], where the function f (latent
utility) and θ = (θ0, θ1, ..., θQ−1, θQ) are to be determined from the data. It is assumed
that θ0 = −∞ and θQ = +∞, so the real line, defined by f (x), x ∈ X , is divided into Q
consecutive intervals. Each region separated by two consecutive biases corresponds
to a category Cq. The constraints θ1 ≤ θ2 ≤ . . . ≤ θQ−1 ensure that P(y � Cq|x)
increases with q [138].

Suppose a model of the latent variable, f (x) = wTx + ε, where ε is the random
component with zero expectation, E[ε] = 0, distributed according to Fε. If a distribu-
tion assumption Fε is made for ε, the cumulative model is obtained by choosing the
inverse distribution F−1

ε as the inverse link function g−1. The most common choice
for the distribution of ε is the logistic function (which is indeed the one selected for
the POM [139]), although probit, complementary log-log, negative log-log or cauchit
functions could also be used [137]. As will be seen, all the models in this section are
inspired by the POM in the strategy assumed, obtaining a projection and dividing
this projection into different ordered intervals, which are associated with ordered cat-
egories. This projection can be used to obtain more information about the confidence
of the predictions by relating it to its proximity to the biases. Additionally, the POM
model provides us with a solid probabilistic interpretation.
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Focusing on the POM model [139], the distribution of ε is assumed to be the stan-
dard logistic function:

g−1 (P(y � Cq|x)
)
= ln

(
P(y � Cq|x)
P(y � Cq|x)

)
= θq −wTx,

odds(y � Cq|x) = exp(θq −wTx),

for 1 ≤ q ≤ Q− 1. Consequently, the ratio of the odds for two different pattens x0

and x1 are proportional:

odds(y � Cq|x1)

odds(y � Cq|x0)
= exp(−wT(x1 − x0)).

More flexible non-proportional alternatives have been developed, one of them simply
assuming different w for each class (which is known as the generalized ordered logit
model [140]), and another applying the proportional odds assumption only to a sub-
set of variables (partial proportional odds [141]). This second model is extended in a
recent work [87], allowing the effects of a subset of variables to vary across threshold
equations by a common factor. Moreover, Tutz [142] presented a general framework
for parametric models that extends generalized additive models to incorporate non-
parametric parts, which are fitted by maximizing penalized log-likelihood.

Another main problem with linear CLMs is that they are rather inflexible since
the decision functions are always linear hyperplanes, this generally affecting the per-
formance of the model. A nonlinear version of the POM model was proposed in
[82, 138] by simply setting the projection f (x) to be the output of a neural network.
The probabilistic interpretation of CLMs can be used to apply a maximum likelihood
maximization for setting the network parameters. Gradient descent techniques with
proper constraints for the biases serve this purpose. This nonlinear generalization
of the POM model based on neural networks was considered in [143], where an
evolutionary algorithm was applied to optimize all the parameters considered. Lin-
ear ordinal logistic regression was combined with nonlinear kernel machines using
primal-dual relations from Nystrom sampling [144]. However, to make the compu-
tation of the model feasible, a sub-sample from the data had to be selected, which
limits the applicability to those cases where there is a reasonable way to do this [144].

support vector machines . Because of their good generalization performance,
SVM models are maybe the most widely applied ones to ordinal regression, their
structure being easily adapted to that of threshold models. The proposal of Herbrich
et al. [8, 37] is the first SVM based algorithm, but they consider a pairwise approach
by deriving a new dataset made up of all possible difference vectors xd

ij = xi − xj and
yij = sign

(
O(yi)−O(yj)

)
, with yi, yj ∈ {C1, . . . , CQ}. In contrast, all the SVM point-

wise approaches share the common objective of seeking Q− 1 parallel discriminant
hyperplanes, all of them represented by a common vector w and the scalars biases
θ1 ≤ . . . ≤ θQ−1 to properly separate training data into ordered classes. In this sense,
several methodologies for the computation of the pairs (w, θ1), . . . , (w, θQ−1) can be
considered. The work of Shashua and Levin [145] introduced two first methods: the
maximization of the margin between the closest neighbouring classes and the maxi-
mization of the sum of margins between classes. Both approaches present two main
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problems [29]: the model is incompletely specified, because the thresholds are not
uniquely defined, and they may not be properly ordered at the optimal solution,
since the inequality θ1 ≤ θ2 ≤ . . . ≤ θQ−1 is not included in the formulation.

Consequently, Chu and Keerthi [33, 39] proposed two different reformulations for
the same idea, solving the problem of unordered thresholds at the solution. On
the one hand, they impose explicit constraints on the optimization problem, only
considering adjacent labels for threshold determination (Support Vector Ordinal Re-
gression with explicit constraints (SVOREX)). On the other hand, patterns in all the
categories are allowed to contribute errors for each hyperplane (Support Vector Ordi-
nal Regression with implicit constraints (SVORIM)), which, as they prove [33], leads
to automatically satisfied constraints in the optimal solution. They empirically found
that SVOREX performed better in terms of accuracy (with a more local behaviour),
and SVORIM preceded in terms of absolute deviations in number of classes or MAE
(with a more global behaviour), and this is justified theoretically based on the loss
minimized for each method. The framework of reduction [31] also explains this from
the point of view of the cost matrices selected. Their idea was reformulated in [146],
as the search of concentric spheres with minimum volume, so an instance of the q-th
category lies inside the sphere of radius Rq and outside the sphere of radius Rq−1.
Generalization properties for some ordinal regression algorithms, including these
SVM approaches, were further studied in [147], this study then extended by Xu et al.
focusing on the strong and weak stability of ordinal regression algorithms [148].

In [149], the errors of an ordinal SVM classifier are studied separately depending
on whether they correspond to upgrading errors (predicted label higher than the
actual one) or downgrading ones (the predicted label being lower than the actual
one). Authors address the two-objective problem of finding a classifier maximizing
simultaneously the two margins, and they show that the whole set of Pareto-optimal
solutions can be obtained by solving one quadratic optimization problem and then
letting the thresholds vary in an appropriate range.

Some recent works focused on solving the bottleneck of these SVM proposals,
which is usually the high computational complexity to handle larger datasets. Con-
cerning this topic, two different proposals can be distinguished: block-quantized
support vector ordinal regression [150] and ordinal-class core vector machines [151].
The former is based on performing kernel k-means and applying SVOR in the cluster
representatives, on the idea of approximating the kernel matrix K by K̃ which will
be composed of k2 constant blocks, in such a way that the problem scales with the
number of clusters, instead of the dataset size. The latter is an extension of core vec-
tor machines [152] in the ordinal regression setting. In that sense, the formulation of
the problem as a minimum enclosing ball problem in the feature space allows linear
asymptotic time complexity with the number of training patterns, while the space
complexity is independent of the number of training patterns.

discriminant learning . Discriminant learning has also been reformulated to
tackle ordinal regression [90]. Discriminant analysis is usually not considered as a
classification technique by itself, but rather as a supervised dimensionality reduction.
Nonetheless, it is widely used for that purpose, since, as a projection method, the def-
inition of thresholds can be used to discriminate the classes. In general, to allow the
computation of the optimal projection for the data, this algorithm analyses two main
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objectives: the maximization of the between-class distance, and the minimization of
the within-class distance, by using variance-covariance matrices and the Rayleigh co-
efficient. In order to reformulate the algorithm for ordinal regression, a minimum
separation constraint is imposed on the closest projections of points of contiguous
pairs of classes in the ordinal scale, which leads the algorithm to order projected pat-
terns according to their label. This will preserve the ordinal information and avoid
some serious ordinal misclassification errors. The methodology is known as Kernel
Discriminant Learning for Ordinal Regression (KDLOR) [76, 90]. The authors claim
that, compared with the SVM based methods, the KDA approach takes advantage of
the global information of the data and the distribution of the classes, and also reduces
the computational complexity of the problem.

The method was extended [153, 154] based on the idea of preserving the intrin-
sic geometry of the data in the embedded nonlinear structure, i.e. in the induced
high-dimensional feature space, via kernel mapping. This consideration is the basis
of manifold learning [9], and the algorithms mentioned construct a neighbourhood
graph (which takes the ordinal nature of the dataset into account) and make use
of a graph search algorithm for computing the shortest path between two pairs of
patterns, a distance that will subsequently be used in the generalized radial basis
function, thus inducing and preserving data structure in kernel mapping. A related
method is proposed in [155], where several different projections are iteratively de-
rived.

perceptron learning . PRank [32, 38] is a perceptron online learning algorithm
with the structure of threshold models. It was then extended by approximating the
Bayes point, what provides good performance for generalization [120]. A kernelized
generalization was proposed in [156], where the key difference was that the predic-
tion problems for different patterns were coupled through the use of joint kernel
functions.

3.3.3.2 Generative Models

Generative models learn a model of the joint probability P(x, y) of input patterns
x and label y, and make the prediction by a Bayesian framework to estimate P(y|x).

gaussian processes . Gaussian Processes for Ordinal Regression (GPOR) [41]
models the latent variable f (x) using Gaussian Processes, to estimate then all the
parameters by means of a Bayesian framework. The values of the latent function f (xi)

are assumed to be the given by random variables indexed by their input vectors in
a zero-mean Gaussian process. Mercer kernel functions approximate the covariance
between the functions of two input vectors. Given the latent function f , the joint
probability of observing the ordinal variables is

P(D| f ) =
N

∏
i=1

P(yi| f (xi)),

and the Bayes theorem is applied to write the posterior probability

P( f |D) =
1

P(D)

N

∏
i=1

P(yi| f (xi))P( f ).
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A Gaussian noise with zero mean and unknown variance σ2 is assumed for the la-
tent functions. The normalization factor P(D), more exactly P(D|θ), is known as
the evidence for the vector of hyperparameters θ and is estimated by two different
approaches in the paper: a Maximum a Posteriori approach with Laplace approxima-
tion and an Expectation Propagation with variational methods.

A more general GPOR was then proposed to tackle multiclass classification prob-
lems but with a free structure of preferences over the labels [157]. A probabilistic
sparse kernel model was proposed for ordinal regression in [158], where a Bayesian
treatment was also employed to train the model. A prior over the weights governed
by a set of hyperparameters was imposed, inspired by the well known relevance
vector machine.

3.3.3.3 Ensembles

From a different perspective, the confidence of a binary classifier can be regarded
as an ordering preference. RankBoost [101] is a boosting algorithm that constructs an
ensemble of those confidence functions to form a better ordering preference. Some
efforts were made to apply a similar idea for ordinal regression problems, deriving
into OR.Boost [159]. The corresponding thresholded-ensemble models inherit the
good properties of ensembles, including more stable predictions and sufficient power
for approximating complicated target functions [160]. The model is composed of
confidence functions, and their weighted linear combination is used as the projection
f (x). Large margin bounds of the error were also obtained [159].

The previous ensembles are based on using binary classifiers with confidence val-
ues as the base learners. With a different perspective, the well-known AdaBoost algo-
rithm was recently extended to improve any base ordinal regression algorithm [161].
The extension, AdaBoost.OR, proved to inherit the good properties of AdaBoost, im-
proving both the training and test performance of existing ordinal classifiers.

3.3.4 Augmented binary classification

Although the approaches in Subsection 3.3.2 are simple to implement, their gener-
alization performance cannot be analysed easily. The two methods included in this
subsection work in different ways.

A reduction framework (RED) can be found in the works of Li and Lin [30], Lin
and Li [31], where ordinal regression is reduced to binary classification, applying
three main steps:

1. Given a coding matrix M of (Q− 1) rows, input patterns (xi, yi) are transformed
into extended binary patterns by replicating them, (x(q)i , y(q)i ), with:

x(q)i = (xi, mq), y(q)i = 2Jq > O(yi)K− 1,

where 1 ≤ q ≤ Q− 1, mq is the q-th row of M and J·K is a Boolean test which is
1 if the inner condition is true, and 0 otherwise. Q− 1 replicates of each pattern
are generated with the following weights:

wi,q = (Q− 1) · |CO(yi),q − CO(yi),q+1|,
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Table 3.3: Extended binary transformation for three given patterns (x1, y1 = C1), (x2, y2 =
C2), (x3, y3 = C3), the identity coding matrix and the quadratic cost matrix.

x(q)i

i q wi,q x mq y(q)i

1 1 2 · |0− 1| = 2 x1 {0, 1} 2J1 < 1K− 1 = −1

1 2 2 · |1− 4| = 3 x1 {1, 0} 2J2 < 1K− 1 = −1

2 1 2 · |1− 0| = 2 x2 {0, 1} 2J1 < 2K− 1 = +1

2 2 2 · |0− 1| = 2 x2 {1, 0} 2J2 < 2K− 1 = −1

3 1 2 · |4− 1| = 3 x3 {0, 1} 2J1 < 3K− 1 = +1

3 2 2 · |1− 0| = 2 x3 {1, 0} 2J2 < 3K− 1 = +1

where 1 ≤ i ≤ N, C is a V-shaped cost matrix, i.e.:CO(yi),q−1 ≥ CO(yi),q if q ≤ O(yi)

CO(yi),q ≤ CO(yi),q+1 if q ≥ O(yi)
.

The cost matrix must be defined a priori. An example of this transformation is
given in Table 3.3.

2. A single binary classifier with confidence outputs, f (x, mq), is trained for the
new extended patterns, aiming at a low weighted 0/1 loss.

3. A classification rule like the following is used to construct a final prediction for
new patterns:

r(x) = 1 +
Q−1

∑
q=1

J f (x, mq) > 0K. (3.2)

All the binary classification problems are solved jointly by computing a single bi-
nary classifier. The most striking characteristic of this algorithm is that it unifies many
existing ordinal regression algorithms [31], such as the perceptron ones [32], kernel
ranking [95], AdaBoost.OR [161], ORBoost-LR and ORBoost-All thresholded ensem-
ble models [159], CLM [137] or several ordinal SVM proposals (oSVM [29], SVORIM
and SVOREX [33]). Moreover, it is important to highlight the theoretical guarantees
provided by the framework, including the derived cost and regret bounds and the
proof of equivalence between ordinal regression and binary classification. An exten-
sion of this reduction framework was proposed in [162], where ordinal regression
is proved to be equivalent to a regular multiclass classification whose distribution is
changed. This extension is free of the following restrictions: target functions should
be rank-monotonic; and rows of loss matrix are convex.

The data replication method of Cardoso et al. [29] (whose previous linear version
appeared in [4]) is a very similar framework, except that it essentially considers the
absolute cost, consequently being less flexible. However, for ordinal regression, in-
creasing the error with the absolute difference between the predicted and estimated
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labels is a natural choice in the absence of any other information [82]. Another dif-
ference is that the framework of data replication includes a parameter s which limits
the number of adjacent classes considered, in such a way that the replicate q is con-
structed by using the q− s classes to its ’left’ and the q + s classes to its ’right’ [29].
This parameter s ∈ {1, ..., Q − 1} plays the role of controlling the increase of data
points.

3.3.5 Other approaches and problem formulations

This subsection includes some methods that are difficult to consider in the previous
groups. For example, an alternative methodology is proposed by da Costa et al. [18,
134] for training ordinal regression models. The main assumption of their proposal
is that the random variable class associated with a given pattern should follow a
unimodal distribution. For this purpose, they provide two possible implementations:
a parametric one, where a specific discrete distribution is assumed and the associated
free parameters are estimated by a neural network; and a non-parametric one, where
no distribution is assumed but the error function is modified to avoid errors from
distant classes. The same idea was then applied to SVMs in [163] by solving an
ordinal problem through a single optimisation process (the all-at-once strategy).

Ordinal decision trees have mainly been applied in the context of monotonic classi-
fication [103, 106], which imposes monotonicity constraints on the classification rule.
However, in [164], both decision trees [118] and nearest neighbour (NN) classifiers
[165] are applied to ordinal regression problems by introducing the notion of consis-
tency: a small change in the input data should not lead to a ’big jump’ in the output
decision, i.e. adjacent decision regions should have equal or consecutive labels. This
rationale was used as a post-processing mechanism of a standard decision tree and as
a pre- or post- processing step for the NN method. An improvement was presented
in [166] to reduce the over-regularised decision region artifact by using ensemble
learning techniques.

Two ordinal learning vector quantization schemes, with metric learning, specif-
ically designed for classifying data items into ordered classes, are introduced in
[34, 167]. The methods use the order information during training, both in the se-
lection of the prototypes and for determining the way they are updated.

3.4 ordinal classification methods used for the experiments

In this thesis we use a set of ordinal classification methods for comparison pur-
poses. We have selected these methods because they are the most extended ones,
and they have competitive classification performance. Also, there are public avail-
able implementations of the methods provided by the authors, with the exception of
KDLOR, which implementation is the one provided in [76]. In the experiments in
this thesis, all the kernel methods are set up with the Gaussian kernel. Here there is
a summary of the ordinal classification methods, as well as their basic configuration,
that are used for the experiments:
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Gaussian Processes for Ordinal Regression (GPOR)1 by Chu and Ghahramani [41],
presents a probabilistic kernel approach to ordinal regression based on Gaus-
sian processes where a threshold model that generalizes the probit function is
used as the likelihood function for ordinal variables. In addition, Chu applies
the automatic relevance determination (ARD) method proposed by [168] and
[169] to the GPOR model. When using GPOR with ARD feature selection, we
will refer the algorithm to as GPOR-ARD.

Support Vector Ordinal Regression (SVOR)2 by Chu and Keerthi [33, 39], pro-
poses two new support vector approaches for ordinal regression: SVOREX and
SVORIM.

RED-SVM3, by Li and Lin [30], Lin and Li [31], applies the reduction from cost-
sensitive ordinal ranking to weighted binary classification (RED) framework to
SVM. In this thesis experiments, the coding matrix considered is the identity
and the cost matrix is the absolute value matrix, applied to the standard binary
soft-margin SVM.

A Simple Approach to Ordinal Regression (ASAOR)4 by Frank and Hall [27] is
a general method that enables standard classification algorithms to make use
of order information in attributes by considering the OrderedPartitions decom-
position presented in subsection 3.3.2.1. Here, the C4.5 method available in
Weka [66] is used as the underlying classification algorithm since this is the
one initially employed by the authors of ASAOR. In this way, the algorithm is
identified as ASAOR(C4.5).

The Proportional Odds Model (POM) is one of the first models specifically de-
signed for ordinal regression [36]. For the POM model, the mnrfit function of
Matlab software has been used.

Kernel Discriminant Learning for Ordinal Regression (KDLOR) [90] extends the
Kernel Discriminant Analysis (KDA) using a rank constraint.

Support Vector Machines (SVM)5 [44, 58] nominal classifier is included in the
experiments in order to establish a baseline nominal performance. C-Support
Vector Classification (SVC) available in libSVM 3.0 [170] is used as the SVM
classifier implementation. In order to deal with the multiclass case, a “one-
versus-one” approach is considered, following the recommendations of Hsu
and Lin [123].

1 GPOR, http://www.gatsby.ucl.ac.uk/chuwei/ordinalregression.html
2 SVOREX and SVORIM, http://www.gatsby.ucl.ac.uk/chuwei/svor.htm
3 RED-SVM, http://home.caltech.edu/htlin/program/libsvm/
4 ASAOR is available in Weka http://www.cs.waikato.ac.nz/ml/weka/

5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.gatsby.ucl.ac.uk/ chuwei/ordinalregression.html
http://www.gatsby.ucl.ac.uk/ chuwei/svor.htm
http://home.caltech.edu/ htlin/program/libsvm/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Part II

P R O P O S A L S F O R O R D I N A L R E G R E S S I O N A N D
I M B A L A N C E D D ATA

This part of the thesis presents the main contributions to the state of the
art. Chapter 4 deals with improvements regarding class imbalance, while
Chapter 5 presents the major contributions to ordinal regression problem.





4
N E W P R O P O S A L S F O R C L A S S I M B A L A N C E P R O B L E M

Summary. This chapter deals with data imbalance issue, a very common
problem in ordinal regression datasets. Data imbalance refers to datasets
where the number of patterns belonging to each class varies noticeably.
For classes with small number of patterns, general purpose classifiers tend
to ignore minority classes and consequently misclassifying patterns as
neighbour (majority) classes. In the recent years, and specially in the
nominal multi-class field, this has motivated research related to produce
classifiers sensitive to all the classes, as well as to develop performance
evaluation metrics that consider per-class classification throughput.

Recently, a multi-objective Minimum Sensitivity-Accuracy based method-
ology has been proposed for building classifiers for imbalanced multi-
class problems [21]. With this goal, the proposal extends a Pareto based
evolutionary algorithm. However, the well known high computational
cost of multi-objective approaches motivates the design of more efficient
alternatives. This chapter presents an effective and efficient alternative to
the Pareto based solution when considering both Accuracy and Minimum
Sensitivity in multi-class classifiers. Several alternatives are presented and
evaluated in the context of imbalanced datasets.

Associated publications. Some portions of this chapter appeared in [109,
171, 172]:

J. Sánchez-Monedero, C. Hervás-Martínez, P.A. Gutiérrez, M. Carbonero-
Ruz, M. C. Ramírez-Moreno, and M. Cruz-Ramírez. Evaluating
the Performance of Evolutionary Extreme Learning Machines by a
Combination of Sensitivity and Accuracy Measures. Neural Network
World, 20:899–912, 2010.
Impact factor (JCR2010): 0.511

http://www.nnw.cz/obsahy10.html

J. Sánchez-Monedero, P. A. Gutiérrez, F. Fernández-Navarro and C.
Hervás-Martínez. Weighting efficient accuracy and minimum sensi-
tivity for evolving multi-class classifiers. Neural Processing Letters, 34

(2):101–116, 2011.
Impact factor (JCR2011): 0.750

http://dx.doi.org/10.1007/s11063-011-9186-9

J. Sánchez-Monedero, C. Hervás-Martínez, F. Martínez-Estudillo, Car-
bonero-Ruz, M. C. Ramírez-Moreno and M. Cruz-Ramírez. Evolu-
tionary learning using a sensitivity-accuracy approach for classifica-
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http://www.nnw.cz/obsahy10.html
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tion. In Hybrid Artificial Intelligence Systems, volume 6077 of Lecture
Notes in Computer Science, pages 288–295. Springer Berlin / Heidel-
berg, 2010.
http://dx.doi.org/10.1007/978-3-642-13803-4_36.

4.1 motivation and objectives

Recently, a multi-objective Minimum Sensitivity-Accuracy based methodology has
been proposed for building class imbalance aware classifiers [21]. The problem has
been formulated as a Pareto front evolutionary strategy for evolving artificial neural
networks [173]. However, the problem of such Pareto based solutions is that those
algorithms are computationally expensive (see Section 4.5). With this motivation, we
propose an algorithm level solution to the class imbalance problem based on a para-
metric fitness function which is optimized in the learning process to balance global
and per-class performance. This fitness function reformulates the multi-objective
Pareto approach as a weighted linear combination of the objectives, which is a more
efficient approach.

On the other hand, we also care about the learning algorithm optimization. Huang
et al. have proposed an algorithm called Extreme Learning Machine (ELM) [174]
which randomly chooses weights connecting input layer nodes and hidden layer
nodes and analytically determines (by using Moore-Penrose generalized inverse [175,
176]) the weights connecting the hidden layer to the output layer of the network. The
algorithm tends to provide good testing performance at an extremely fast learning
speed. However, ELM may need a higher number of hidden nodes due to the ran-
dom determination of the weights and biases between input and hidden layers. In
[177], a hybrid algorithm called Evolutionary Extreme Learning Machine (E-ELM)
was proposed by using the differential evolution (DE) algorithm [178]. The experi-
mental results obtained show that this approach reduces the number of hidden nodes
and obtains more compact networks.

In this chapter, the simultaneous optimization of Accuracy (or C) and Minimum
Sensitivity (MS) is carried out by means of a modification of the E-ELM algorithm.
The key point of this modification is the fitness function considered, which tries to
take into account both C and MS objectives. A convex linear combination of both tries
to achieve a good balance between the classification rate level in the global dataset
and an acceptable level for each class.

The chapter follows with an introduction to the class imbalance problem (Section
4.2), the associated specific performance metrics (Section 4.3) and a taxonomy of solu-
tions to the problem (Section 4.4). Then, a brief exposition of related multi-objective
research, ELM and E-ELM works is done at Section 4.5. Section 4.6 proposes different
fitness functions and the Evolutionary ELM considering C and MS (E-ELM-CS) algo-
rithm, as well as an ELM model extension to obtain probabilities associated to the
model predictions. Section 4.7 shows experiments evaluating the incidence of the λ

hyper-parameter to E-ELM-CS, and compares several proposed fitness functions and
different related state of the art methods in order to choose the best options consid-
ering classification performance and computational time. Finally, some conclusions
are drawn.

http://dx.doi.org/10.1007/978-3-642-13803-4_36
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4.2 introduction to class imbalance

A dataset is considered to be imbalanced or to present class imbalance if at least
one of the classes (often called minority class) contains a much smaller number of
patterns than the other classes (usually referred to as majority classes). This can be
also expressed as a dataset where there are differences in class prior probabilities.
In recent years, the imbalanced learning problem has drawn a significant amount of
interest in machine learning [179–182]. The fundamental issue with the imbalanced
learning problem is the ability of imbalanced data to significantly compromise the
performance of most standard learning algorithms [182], whose performance tend to
be biased to the majority classes. This problem is even more severe if we consider
that typically, in real world problems, the minority class is of primary interest in a
given application [183, 184]. An example of this are the majority of medical diagno-
sis problems, such as donor-recipient matching in liver transplantation [185]. Other
real problems examples presenting class imbalance are detection of oil spills in satel-
lite radar images [186], detection of fraudulent calls [187], risk management [188],
predictive microbiology [189] or text classification [190].

However, it should be noticed that class imbalance alone is not the only dataset fea-
ture that hinders the performance of some standard classifiers. Prati et al. [191] high-
light that often this performance decay has been exclusively attributed to imbalance,
conversely, class imbalance does not hinder performance by itself. This deduction is
straightforward since minority well separated classes are easy to classify independent
of the class prior. Prati et al. [191] conclude that class overlapping have a role even
stronger than class imbalance. This claim is related to the study of Murphey et al.
[192], that asserts that the imbalanced problem is more serious when the dataset has
a high level of noise, which is highly related to class overlapping. This issue has been
pointed out also by other authors [193], as well as the problem of the effect of small
sample size, that is worsen by the increment of data dimensionality.

4.3 evaluation of imbalanced problems

Evaluation metrics are essential in machine learning. They are used to evaluate
and guide the learning algorithms. In the case of imbalanced data sets, if the metric
does not value the minority class, the learning algorithm will not be able to prop-
erly handle the imbalance problem [194]. This section is devoted to revise the most
commonly used performance metrics for the imbalance case, along with the proposal
used for the contributions of the rest of the chapter.

4.3.1 Performance evaluation in binary imbalanced problems

As previously mentioned, classification metrics such as Accuracy (Acc) may lead
to erroneous conclusions since the majority class (or classes) have more impact on the
performance metric and the learning algorithm than the minority class (or classes),
then alternative metrics are needed [195]. In binary classification, there are three
alternatives which are the most commonly used [194]. Table 4.1 presents a binary
classification confusion matrix, which is the base of many metrics.
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Table 4.1: Contingency or confusion matrix presenting the relation between true positives,
true negatives, false positives, and false negatives

actual class (observation)

predicted class
(expectation)

TP (true positive)
Correct result

FP (false positive)
Unexpected result

FN (false negative)
Missing result

TN (true negative)
Correct absence of result

4.3.1.1 Metrics when the minority class is more relevant

The first metric set includes the Precision, Recall and F-measure, which is used when
the performance of the positive class (the minority class) is considered, i.e. it is more
important for the problem, in the learning task. This typically the case of medical
diagnosis applications.

The Precision of a classifier is the percentage of positive predictions that are correct:

Precision =
TP

TP + FP
. (4.1)

Recall (also Sensitivity (S) or true positive rate) is the rate of true positive patterns
rightly classified:

Recall =
TP

TP + FN
. (4.2)

The F-measure is related to a high value of both Precision and Recall, and is defined
as the harmonic mean of both [196]:

F-measure =
2× Recall× Precision

Recall + Precision
. (4.3)

4.3.1.2 Metrics when both classes are relevant

When the performance of both classes is important and is expected to be high
simultaneously, the Sensitivity, Specificity and the geometric mean of both are used.

The S (also positive rate, or the recall rate) measures the rate of actual positives
which are correctly identified as such (e.g. the percentage of people having an illness
who are correctly identified as having the illness):

Sensitivity = Recall =
TP

TP + FN
. (4.4)

The Specificity (also called positive predictive value, precision rate or True Negative
Rate (TNR)) measures the proportion of negatives which are correctly identified as
such (e.g. the percentage of people that do not have the illness and are correctly
identified as not having it). The Specificity is the True Negative Rate (TNR):

Specificity =
TN

TN + FP
. (4.5)
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Finally, Kubat and Matwin [197] proposed the geometric mean (G-mean) of the Sen-
sitivity (precision on the positive patterns) and Specificity (precision on the negative
examples):

G-Mean =
√

Sensitivity× Specificity. (4.6)

Then, the G-Mean indicates the balance between classification performances on the
majority and minority classes, and it has been used by several authors [181, 186, 198].
This metric can be extended to the multiclass case by using the performance of each
individual class as terms of the product in Equation 4.6.

Finally, for ending this subsection, it is worthwhile to formulate Acc in terms of
the elements of the confusion or contingency matrix in Table 4.1:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.7)

4.3.1.3 ROC and AUC

In a Sensitivity-Specificity analysis there is usually desired a trade-off between
these measures. Though the use of the geometric mean of the true rates is very ex-
tended for considering the whole performance [181, 186, 198], probably the Receiver
Operating Characteristic (ROC) and the area under the ROC curve (AUC) are the two
most common measures for assessing the overall classification performance compro-
mise [195].

perfect classification

random classificationbetter classification

worse classification

Figure 4.1: Receiver operating characteristic example comparing three classifiers. Observe the
optimal classification (0.0,1.0) point, and the line indicating random classifiers.

The ROC is a two-dimensional graph of the relationship between classification
achievements and classification costs in terms of the decision threshold variation. The
ROC curve reveals that the true positive rate cannot increase without also increasing
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the false positive rate. The aforementioned trade-off can be graphically shown as a
ROC curve, allowing visual comparison of different classifiers performance.

Moreover to the visual comparison, it might be necessary to obtain a numerical
representation of a classifier performance (e.g. for using the metric to guide an op-
timization search). The ROC performance can be reduced to a single scalar value
representing expected performance, normally calculating the AUC which measures
the misclassification rate of one class and the accuracy of the other. Then the AUC has
the attractive property that it side-steps the need to specify the costs of the different
kinds of misclassification [199].

Since the AUC is a portion of the area of the unit square, its value will always
be between 0 and 1. However, because random guessing produces the diagonal
line between (0, 0) and (1, 1), which has an area of 0.5, no realistic classifier should
have an AUC less than 0.5 [196]. The AUC has the following statistical property:
the AUC of a classifier is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance
[196]. Finally, it should be noticed than if AUC < 0.5 it can be stated than the classifier
has worse performance than a random classifier. See Figure 4.1 for ROC curves and
AUC values examples.

The AUC presents two limitations. The first one is the fastening to binary prob-
lems, though some attempts have being introduced in the late years to extend ROC
analysis to multi-class problems. The second limitation of the AUC evaluation is that
it depends on a classifier output providing pattern’s scores to allow pattern ordering.
However many classifiers do not provide this type of output1. If this is the case, the
geometric mean approach is a reasonable alternative.

4.3.2 Performance evaluation in multi-class imbalanced problems

The ROC curve and the AUC have been widely used to analyze and evaluate
the quality of binary classifiers [201, 202] however its application to the multi-class
case is not straightforward. Srinivasan [203] has shown that, theoretically, the ROC
analysis extends to more than two classes “directly” [204]. In addition, different ap-
proaches have been proposed to extend the ROC analysis to multi-class classification
[199, 204, 205]. More precisely, the ROC analysis in the Q class case (Q > 2) implies
the calculation of the Volume Under the ROC Surface (VUS). Nevertheless this cal-
culation is not trivial and there are computational limits to its estimation. However,
there are not only computational limitations but also representational ones. ROC
analysis in two dimensions has a very nice and understandable representation, but it
cannot be directly extended to more than two classes, because even for 3 classes we
have a 6D space [204].

Other proposals, such as the one of Hand and Till [199], are valid for non-direct
multi-class formulation, i.e. one-versus-one and one-versus-all strategies. However,
these proposals are linked to the underlying multi-class decomposition scheme, so

1 It should be noticed that there is an active work in extending classifiers for this purpose. For instance,
though neural networks models do not typically produce probabilistic outputs, it is possible to obtain
a probabilistic estimations adding a softmax [200] transformation layer to the neural network model
output layer. However, other probabilistic extensions are not so direct.
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that a direct multi-class evaluation can be more suitable and can be better extended
to different types of classifiers.

Due to the lack of a robust and efficient alternative to AUC for multi-class, the
geometric mean of the true rates is probably the most extended metric [181, 184, 186,
198]. However, it has been lately proposed the aforementioned Minimum Sensitivity-
Accuracy pair with the purpose of visualizing and evaluating multi-class classifiers.
The explanation of this proposal is done in the next subsection.

4.3.3 Accuracy and Minimum Sensitivity

As exposed in the current chapter, in nominal classification, to evaluate a classifier,
the machine learning community has traditionally used the Accuracy to measure its
default performance. In the same way, Accuracy, as other global performance metrics
such as the Mean Squared Error (MSE), has been frequently used as the fitness func-
tion in evolutionary algorithms when solving classification problems. However, the
pitfalls of using Accuracy have been pointed out by several authors [206] since it only
reflects a one-dimensional – the global performance – aspect of the classification.

Martínez-Estudillo et al. [207] address the problem of the one dimensional con-
sideration in multi-class problems. In that work, two measures are considered to
evaluate a classifier: traditionally used Accuracy (Acc, CCR or C) and the proposed
minimum Sensitivity from all classes, i.e. Minimum Sensitivity; that is, the premise
assumed is that a good classifier should combine a high correct classification rate
level in the generalization set with an acceptable accuracy level for each class. The
following exposition is a summary of the works of Martínez-Estudillo et al. [207] and
Fernández-Caballero et al. [21], for further details please check these references.

A classification problem with Q classes and N training or testing patterns is con-
sidered, with g as a classifier obtaining a Q × Q contingency or confusion matrix
M (g) =

{
nij; ∑Q

i,j=1 nij = N
}

, where nij represents the number of times the patterns
are predicted by classifier g to be in class j when they really belong to class i. The
main diagonal corresponds to the correctly classified patterns and the off-diagonal to
the mistakes in the classification task.

The number of patterns associated with class i can be denoted by ni• = ∑Q
j=1 nij,

i = 1, . . . , Q. Two scalar measures are derived, which take the elements of the confu-
sion matrix into consideration from different points of view [21, 207]. Let Si = nii/ni•
be the number of patterns correctly predicted to be in class i with respect to the total
number of patterns in i (Sensitivity for class i). Therefore, the Sensitivity for class i
estimates the probability of correctly predicting a class i example. From the above
quantities, the Minimum Sensitivity (MS) of the classifier is defined as the minimum
value of the sensitivities for each class, MS = min {Si; i = 1, . . . , Q}. Moreover, the
Correct Classification Rate or Accuracy is the rate of all the correct predictions:

C = (1/N)
Q

∑
j=1

njj. (4.8)

The two-dimensional measure (MS, C) associated to a classifier g is an interesting
alternative for representing its behaviour (MS on the horizontal axis and C on the
vertical axis). A classifier depicted in this space is giving information about two of
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Figure 4.2: Unfeasible region in the two-dimensional (MS, C) space for a concrete classifica-
tion problem.

its features: the global performance and the performance in each class. One point
in (MS, C) space dominates another if it is above and to the right, i.e., it has more
Accuracy and greater Sensitivity.

It is straightforward to prove the following relationship between C and MS (see
[207]). Let us consider a Q-class classification problem. Let C and MS associated
with a classifier g, then MS ≤ C ≤ 1 − (1−MS) p∗, where p∗ = nq•/N is the
minimum of the estimated prior probabilities (q is the class with the lowest number
of patterns).

Therefore, each classifier will be represented as a point outside the shaded region
in Figure 4.2. Several points in (MS, C) space are important to note. The lower left
point (0, 0) represents the worst classifier and the optimum classifier is located at the
(1, 1) point. Furthermore, the points on the vertical axis correspond to classifiers that
are not able to predict any point in a concrete class correctly. Note that it is possible
to find among them classifiers with a high level of C, particularly in problems with
small p∗.

The optimization strategies in the (MS, C) space should try to move the classifiers
towards the optimum classifier located in the (1, 1).

4.4 solutions for the class imbalanced problem

The previous section has introduced and motivated the problem research, and it
has preliminary depicted some associated issues. The present section introduces how
the class imbalance problem is addressed, which is currently done from two points
of view that are not exclusive:

data preprocessing level . The data is preprocessed in order to lighten the class
distribution imbalance. These techniques are known as resampling techniques,
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and the purpose is to change the class distribution by suppressing or adding
patterns. Resampling techniques can be divided into three groups: undersam-
pling methods, which delete instances (typically from the majority classes); over-
sampling methods, which create a superset of the original dataset by replicating
some instances or creating new synthetic instances from existing ones; and fi-
nally, hybrid methods, that combine both sampling approaches [193]. Probably
the most extended oversampling technique is the SMOTE (Synthetic minority
over-sampling technique) [183].

model and algorithm level . Many existing classifiers’ models and/or train-
ing algorithms can be modified for dealing with data imbalance. For instance,
cost-sensitive learning takes into account the variable cost of a misclassification
of the different classes [208], for instance adding more penalty to false nega-
tive errors in binary classification (i.e. misclassifying the interest class). The
approach of Fernández-Caballero et al. [21] can be placed in this category since
the algorithm optimizes two performance metrics for considering the per-class
performance. This can be viewed as a type of cost-sensitive learning in which
the cost matrix does not need to be adjusted. Another example, is the threshold-
moving, this is, the output decision thresholds are moved toward inexpensive
classes such that examples with higher costs become harder to be misclassified
[209].

Regarding the second category, since most popular classifiers are reported to be
inadequate when faced with the class imbalance problem, there are several works
extending those models to improve classification in this context. For instance, deci-
sion trees [179, 195, 210], Support Vector Machines [179, 211, 212], neural networks
[21, 179, 184], Bayesian networks [188], nearest neighbour classifiers [188] or asso-
ciative classification approaches [213], among others. Recently, Fernández-Caballero
et al. [21] demonstrated that global class performance and minority class performance
can be competitive objectives in classifiers’ training, which justified the use of a multi-
objective optimization approach, and they tested it in the context of MLP training.

An example of a hybrid approach is the method of Fernández-Navarro et al. [184]
in which a dynamic oversampling technique is proposed in the context of evolu-
tionary optimization. While most resampling techniques can be considered as static
techniques, in that dynamic approach the SMOTE algorithm is selectively applied to
the worst classified classes during the evolution.

4.5 related works

4.5.1 Multi-Objective Evolutionary Optimization

As introduced in Section 4.3.3, our approach tries to build classifiers with C and
MS simultaneously optimized. These objectives are not always cooperative, specially
with high C and MS values [21]. Moreover, considering the multi-objective evolution-
ary framework, C and MS are opposite objectives at high levels. This fact justifies the
use of a multi-objective framework for the learning algorithm. However, since MS is
not a differentiable function, most classic optimization methods can not be applied.
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This second point motivates the use of evolutionary algorithms as a heuristic to op-
timize the objectives. This kind of algorithms are formally known as multi-objective
evolutionary algorithms (MOEAs).

The idea of designing neural networks within a multi-objective approach was first
considered by Abbass in [214, 215]. In these works, the multi-objective problem for-
mulation essentially involved the setting up of two objectives: the complexity of the
network (in terms of number of hidden nodes in the neural network) and the train-
ing error (measured with MSE). For addressing that, an algorithm called memetic
Pareto artificial neural networks (MPANN) which uses Pareto differential evolution
was proposed, showing improvements with respect to many other MOEAs.

Fernández et al. [21] extended the NSGA-II algorithm [216] by including C and
MS as the objectives in the algorithm2. In addition, the NSGA-II was hybridized
with iRprop+ [217] as the local search procedure, but this algorithm was only ap-
plied in specific generations during the evolution, the resulting algorithm is called
MPENSGA-II. This Pareto multi-objective approach has been later successfully ap-
plied for solving predictive microbiology problems [218]. These problems are often
imbalanced and in general the classes with lower number of patterns are the most
important classes.

However, it is well known that Pareto-based approaches are expensive in terms of
computational time as pointed out in Coello [219]. The main problem with Pareto
ranking is that there is no efficient algorithm to check for non-dominance in a set
of feasible solutions [220]. As a consequence, traditional algorithms have serious
performance degradation as the size of the population, the number of generations
and the number of objectives increases [219].

One alternative for addressing multi-objective problems in a more efficient strategy
(in terms of computing time) is to combine objectives into a single function which is
normally denominated aggregating function [219]. This option can be suitable when
the behaviour of the objective functions is more or less well known, and it presents an
unique candidate solution, that can be an advantage in some domains. The weighted
sum approach is one alternative for implementing an aggregating function. This
method consist on adding the different objective functions with different weights for
each one of the functions, then the multi-objective problem is turned into a scalar
optimization problem formulated as:

min
k

∑
i=1

wi fi(x),

where fi is an objective function, wi is the weight coefficient representing the impor-
tance of fi and ∑k

i=1 wi = 1.
Weighted linear combination proves to be very efficient in practice for certain types

of problems, for example in combinatorial multi-objective optimization, and its com-
putational cost is noticeably lower than other multi-objective approaches [219]. Some
of the applications of this technique are schedule evaluation of a resource scheduler
or design multiplierless IIR filters [221]. The main disadvantage is that it may be dif-
ficult to determine the proper weights. However, this option is a good method when
there are two objectives, as it is our case, and when the first Pareto front has a very

2 Actually in that work the cross-entropy error [16] was used as a equivalent function to C.
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small number of models, in some cases only one (an example of this last case can be
seen at experimental results from MPANN methodology in balance dataset in Figure
4.6 at Subsection 4.7.2).

4.5.2 Extreme Learning Machine and Differential Evolution

The Extreme Learning Machine (ELM) algorithm has been proposed by Huang
et al. [42, 174]. ELM and its extensions have been applied to microarray gene expres-
sion cancer diagnosis [222, 223], sales forecasting [224], real-time watermarking [225],
Quality-of-Service (QoS) violation detection in multimedia transmission [226] and
other problems. This section briefly presents ELM algorithm and the Evolutionary
ELM.

Let us consider the training set D = {(xi, yi) | xi ∈ X , yi ∈ Y , i = 1, . . . , N}, where
N is the number of samples, Q is the number of classes, and K the number of
dimensions. Then, each pattern is represented by a K-dimensional feature vector
x ∈ X ⊆ RK, i.e. xi = (xi1, xi2, . . . , xiK), and a class label y ∈ Y = {C1, C2, . . . , CQ}.
Since the single model neural networks have one output neuron per class, in this
case, the label is represented as a Q× 1 target vector ti ∈ RQ, i.e. ti = (ti1, ti2, . . . , tiQ),
where tij = 1 means that pattern xi belongs to class j and tij = 0 means the pattern
does not belong to class j. This target coding is known as a 1-of-Q coding scheme [9].

Let us consider a MLP with M nodes in the hidden layer and Q nodes in the output
layer given by:

f (x,θ) = ( f1(x, θ1), f2(x, θ2), . . . , fQ(x, θQ)), (4.9)

where:
fq(x, θq) = β

q
0 + ∑M

j=1 β
q
j σj(x, wj), q = 1, 2, . . . , Q, (4.10)

where θ = (θ1, . . . , θQ)
T is the transpose matrix containing all the neural net weights,

θq = (βq, w1, . . . , wM) is the vector of weights of the qth output node, βq =

β
q
0, β

q
1, . . . , β

q
M is the vector of weights of the connections between the hidden layer

and the qth output node, wj = (w1j, . . . , wKj) is the vector of weights of the connec-
tions between the input layer and the jth hidden node, Q is the number of classes in
the problem, M is the number of sigmoidal units in the hidden layer and σj

(
x, wj

)
the sigmoidal function:

σj
(
x, wj

)
=

1

1 + exp
(
−
(

w0j + ∑K
i=1 wijxi

)) ,

where w0j is the bias of the jth hidden node.
The linear system f (xj) = tj, j = 1, 2, . . . , N, can be written as the following matrix

system Hβ = T, where H is the hidden layer output matrix of the network:

H (x1, . . . , xN , w1, . . . , wM) =


σ (x1, w1) · · · σ (x1, wM)

...
. . .

...

σ (xN , w1) · · · σ (xN , wM)


N×M

,

β =


β1
...

βM


M×Q

and T =


t1
...

tN


N×Q

.
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The ELM algorithm randomly selects the wj = (w1j, . . . , wKj), j = 1, . . . , M, weights
and biases for hidden nodes, and analytically determines the output weights β

q
0, β

q
1,

. . . , β
q
M for q = 1 . . . Q by finding the least square solution to the given linear system.

The minimum norm least-square solution (LS) to the linear system is β̂ = H†T, where
H† is the Moore-Penrose generalized inverse [175, 176] of matrix H. The minimum
norm LS solution is unique and has the smallest norm among all the LS solutions,
which guarantees better generalization performance.

However, ELM may need a higher number of hidden nodes due to the random
determination of the input weights and hidden biases. The Evolutionary Extreme
Learning Machine (E-ELM) [177] improves the original ELM by using a differential
evolution algorithm so that more compact networks can be obtained. DE was pro-
posed by Storn and Price [178] and it is known as one of the most efficient evolu-
tionary algorithms with many applications such as artificial neural networks training
[227]. The E-ELM uses DE to select the input weights between input and hidden lay-
ers and the Moore-Penrose generalized inverse to analytically determine the output
weights between hidden and output layers. A non-evolutionary alternative to obtain
simpler ELM models is the Optimally Pruned Extreme Learning Machine (OP-ELM)
by Miche et al. [228]. The OP-ELM performs network pruning by applying the Mul-
tiresponse Sparse Regression (MRSR) to rank hidden layer neurons together with a
leave-one-out (LOO) validation strategy. ELM is not tied to the Sigmoidal basis func-
tion and it has been extended to the RBF case, the Generalized RBF [229] function, or
to models with several types of nodes in the hidden layer [228].

For ending this section we want to summarize the controversy generated by the
ELM term. In 2008, Wang and Wan [230] presented an article entitled Comments on
“The extreme learning machine” to the IEEE Transactions on Neural Networks journal,
the abstract is the following:

This comment letter points out that the essence of the “extreme learning
machine (ELM)” recently appeared has been proposed earlier by Broom-
head and Lowe and Pao et al., and discussed by other authors. Hence, it
is not necessary to introduce a new name “ELM”.

The authors of ELM responded with a letter explaining the differences between
previous works and “ELM” in a complementary article (see Reply to “Comments on
“The extreme learning machine”” [231]). Despite the controversy, the motivation to
research in efficient non-iterative learning methods have been spread in the commu-
nity and the number of works related to ELM has been growing in the last years
[232].

4.6 proposal 1 : evolutionary elm considering accuracy and mini-
mum sensitivity

4.6.1 Fitness function design

As mentioned in the motivation section, our approach tries to build classifiers
with simultaneously optimized C and MS. Since these objectives are not always
cooperative [21, 207], neither MS is differentiable, an evolutionary multi-objective
approach could be used.
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In this work, a linear combination is used to obtain the maximization of objectives
C and MS.

We assume we do not have a priori information about the proper weighting of
C and MS for each dataset. Thus, both measures are considered equally important.
Thereby, we deal with this problem by adapting the algorithm to each dataset through
a nested cross-validation procedure. Our purpose is to design a fitness function able
to weight up both C and MS objectives in the algorithm.

There is no rule for establishing priorities between C and MS. Thus, we include a
parameter for weighting the two objectives. The underlying idea is to have an auto-
matically adjustable fitness function which could be optimized for each dataset via
this parameter, called λ, ranging between [0, 1]. In this work, three fitness functions
are proposed to try to balance the two objectives.

The first fitness function is based on C and MS. This function evaluates the per-
formance of a classifier depending on a weighted Accuracy level and a weighted
Minimum Sensitivity. It is defined by:

FλCS = (1− λ)C + λMS. (4.11)

The function below is a direct expression of the objectives that can be useful for
studying the algorithm behaviour in the (MS, C) space, hereafter the use of this
function for fitness evaluation in an algorithm can not be optimal. According to [9,
16], in general terms, the use of continuous function for training neural networks for
classification problems makes the convergence of the algorithm more robust. Then,
by using, for instance, the root mean square error (RMSE) or the cross-entropy error
[16] the fitness function is turned into a continuous function.

In order to properly calculate the RMSE and the cross-entropy error, the neural
network outputs need to be interpreted as probabilities pq, thereby, they must satisfy
the following constraints [16]:

Q

∑
q=1

pq(x, θq) = 1, (4.12)

0 ≤ pq(x, θq) ≤ 1. (4.13)

The first constraint also ensures that the distribution is correctly normalized, so that∫
p(t|x)dt = 1. These constraints can be satisfied by choosing a pq output related to

the corresponding network outputs fq by a softmax function [200]. Then, the softmax
activation function is added to standard ELM model outputs:

pq = pq(x, θq) =
exp( fq(x, θq))

∑Q
i=1 exp( fi(x, θi))

, 1 ≤ q ≤ Q, (4.14)

where fq are the ELM outputs defined in Equation 4.10 and pq is the posterior prob-
ability that a pattern x has of belonging to class q. A pattern will belong to the class
with the greatest membership probability, this is:

C(θq, x) = arg max
q

pq(x, θq), 1 ≤ q ≤ Q. (4.15)

Then, once a probabilistic function from the ELM output is determined, a fitness
function based on RMSE is proposed:
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FλR (θ) = (1− λ)
1

1 + 1
N ∑Q

q=1(nqRq (θ))
+ λ

1
1 + max

{
Rq (θ) , q = 1, . . . , Q

} , (4.16)

where nq = ∑Q
i=1 nqi,q = 1, . . . , Q is the number of patterns associated with class q.

Rq (θ) is the RMSE per class in the problem, defined by:

Rq (θ) =

√√√√∑
nq
i=1 ∑Q

q=1

(
tiq − pq (xi,θ)

)
)2

nqQ
, (4.17)

where N is the number of patterns, tiq is the target value for class q of pattern xi
(tiq will be equal to 1 if the pattern xi belongs to class q and 0 otherwise), pq is the
probability pattern xi has of belonging to class q, and nq is the number of patterns
associated with class q.

The fitness function defined in Eq. 4.16 introduces an alternative for considering C
and MS. The first term represents the global accuracy error for all the classes while
the second term represents the isolated error of the worst classified class as defined
in Eq. 4.17. The maximum error is selected because it is the equivalent to consider
Minimum Sensitivity, which is the minimum Accuracy for each class.

The third fitness function proposed is based on cross-entropy error in a similar way
to FλR defined in Eq. 4.16:

FλE = (1− λ)
1

1 + 1
N ∑Q

q=1(nqEq (θ))
+ λ

1
1 + max

{
Eq (θ) , q = 1, . . . , Q

} , (4.18)

where Eq is the cross-entropy error per class in the problem, defined by:

Eq (θ) =
−∑

nq
i=1 ∑Q

q=1(tiq ln(pq(xi, θq))

nqQ
, (4.19)

This error function is also known as the negative log likelihood and, when it is
minimized, maximum likelihood estimates (pq

(
xi, θq

)
) are obtained for the event

observed.

4.6.2 The E-ELM-CS Algorithm

Our proposed method is implemented by using the E-ELM [177]. E-ELM for clas-
sification problems only considers the misclassification rate of the classifier. Further
details about the algorithm can be consulted in [177]. The E-ELM has been extended
in two ways. First, the three fitness functions designed in Section 4.6.1 are added,
including the addition of the softmax layer to the model. Secondly, a 10-fold cross-
validation is applied, using exclusively the training data, which aims to optimally
configure the λ parameter of the fitness function. Note that after several experiments
with different λ values no generic optimal value for λ was found to maximize both C
and MS, that is, λ depends on the data set (see experiments at Section 4.7.1). There-
fore, a cross-validation process is mandatory for each different dataset. Then, the
algorithm extension is called E-ELM-CS . The E-ELM-CS algorithm pseudocode is
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Require: E-ELM-CS (P (Training Patterns), T (Training Tags), F (Fitness Function), λ)

1: λ̂← Calculate optimal λ for F and (P,T)
2: Create a random initial population θi = [w1, . . . , wk, b1, . . . , bk], i = 1 . . . N
3: for each individual do
4: β̂← ELM_output(w, P, T) {Calculate output weights}
5: fitness← get_fitness(w, β̂, F, λ̂, P, T) {Evaluate individual}
6: end for
7: Select best individual of initial population
8: while Stop condition is not met do
9: Mutate random individuals and apply crossover as described in [177]

10: for each individual in the new population do
11: β̂← ELM_output(w, P, T) {Calculate output weights}
12: fitness← get_fitness(w, β̂, F, λ̂, P, T) {Evaluate model}
13: Select new individuals for replacing individuals in old population
14: end for
15: Select the best model in the generation
16: end while
17: return Best ELM model

18: function β̂ = ELM_output(w, P, T)
19: Calculate the hidden layer output matrix H
20: Calculate the output weight β̂ = H†T
21: return β̂

22: function Fλ = get_ f itness(w, β, F, λ, P, T)
23: if FλCS then
24: Build training confusion matrix M
25: Calculate C and MS from M
26: Get classifier fitness with Eq. (4.11)
27: else if FλR or FλE then
28: Add softmax layer to the ELM model (w, β̂)

29: if FλR then
30: Get classifier fitness with Eq. (4.16)
31: else
32: Get classifier fitness with Eq. (4.18)
33: end if
34: end if
35: return Individual fitness

Figure 4.3: E-ELM-CS algorithm pseudocode.

shown in Figure 4.3. Mutation, crossover and selection operators work as described
in [177].

The cross-validation is performed by testing a range of λ values for the chosen
fitness function in E-ELM-CS and a given configuration for the remainder parameters.
The training set is stratified into 10 sets so 10 validation configurations can be formed.
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Each one of the 10 validation tests consists of different combinations of 9 sets for
training and a different one for validation. Note that generalization data is never
used during this cross-validation procedure so that the final algorithm performance
will be measured only with unseen data. For each λ value to validate, the E-ELM-CS
algorithm is run three times with the same data partition. Therefore the total number
of executions over the training data is 30. The λ considered as optimal is the one
shown in the following equation:

λ̂ = arg max
λi

Cλi + MSλi

2
, (4.20)

where Cλi is the mean C and MSλi is the mean MS obtained by the algorithm in the
different validation folds using λi for the fitness function.

The parameters related to the evolutionary algorithm are the same for the whole
cross-validation process with the exception of the parameter related to the number
of generations, which is reduced to 1/5 of the final number of generations because,
experimentally, it is not necessary to go further in the number of generations in
order to find the best λ. The λ values to be tested are selected from the range [0, 1]
in intervals of 0.25. Previous experiments confirmed that there were no significant
differences if the cross-validation was performed with more values. So, considering
a few λ values and reducing the number of generations in the algorithm, the cross-
validation process time is drastically reduced.

4.7 experiments

In this section we perform some experiments with two purposes. First, to analyse
the behaviour of the E-ELM-CS algorithm regarding the weight of the two objectives
(Section 4.7.1), and secondly, we analyse the performance of the three fitness func-
tions of E-ELM-CS compared to several related methods and some baseline methods
(Section 4.7.3).

The E-ELM-CS is implemented as an extension of E-ELM source code available
at the authors’ public website3. For all the experiments, the crossover and mutator
parameters were set up as described in [177] (the crossover constant CR was 0.8, the
constant factor F, which controls the amplification of the differential variation, was 1
and the tolerance rate was 0.02).

4.7.1 Analysis of the effect of λ values

In this subsection, we consider the effect of the λ values. The objective of this study
is to evaluate how the E-ELM-CS can achieve very different results depending on the
λ value selected, and how different datasets can demand different λ values.

Firstly, to evidence that C and MS can be competitive objectives we present the
evolution of E-ELM-CS across several iterations4 for breastc database (see Table 4.2)
in Figure 4.4.

3 http://www3.ntu.edu.sg/home/egbhuang/

4 Note we present more iterations than usual here in order to better observe the behaviour of the algo-
rithm.

http://www3.ntu.edu.sg/home/egbhuang/
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Table 4.2: Datasets used for the experiments observing the influence of λ parameter.

Dataset Size #Input #Classes Distribution p∗

breastc 286 15 2 (201,85) 0.2972

balance 625 4 3 (288,49,288) 0.0784

BTX 63 3 7 (9,9,9,9,9,9,9) 0.1429
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Figure 4.4: C and MS evolution for breastc database using E-ELM-CS. The training and gen-
eralization performance of the best individual for each generation is showed. Ob-
serve than imposing more weight to the MS (λ = 0.9) move the best individual of
the population though better performance in MS, but this is done at the cost of C.
Even in the case of λ = 0.4, the best individual performance in C is decreased in
order to increase the MS performance. However, the generalization performance
of C is the same for the two λ options. This gives us a hint about the necessity of
optimizing the λ value for each dataset with a validation set.

Second, we analyse the generalization performance of different λ values. Here we
consider two datasets with different features taken from the UCI repository [233] and
one real-world problem of analytical chemistry (benzene-toluene-xylene (BTX) and
their mixtures discrimination, see Hervás-Martínez et al. [234]). Table 4.2 shows the
features for each dataset. The experimental design was conducted using a stratified
holdout procedure (see Prechelt [235]) with 30 runs, where approximately 75% of the
patterns were randomly selected for the training set and the remainder 25% for the
generalization set.

In this second series of experiments, the number of individuals in the population
were 100 and the number of generations were set up to 50. The number of hidden
nodes of the neural network was obtained by a cross-validation procedure varying
the number of hidden nodes between 5 and 20.

In this section, we briefly observe the effect of the λ value of the fitness function
FλCS described in Eq. 4.11 on the classifier performance in terms of C and MS. For
these experiments, we have chosen this function and discarted the other proposals
because we can represent the training and generalization performance in the (MS, C)
space described in Section 4.3.3. For breastc, balance and BTX datasets described in
Table 4.2, both training and generalization performance results are presented. Figure
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Figure 4.5: Different λ results for breastc, balance and BTX databases. For each dataset the
training results are placed on the left column and the generalization performance
is shown in the right column. For each figure, a box containing a higher scale
representation of the most interesting zone is included.
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4.5 presents results of E-ELM-CS for all the λ values in the set [0.0, 0.1, . . . , 1.0]. The
results are the mean of the best models of 30 runs for each configuration. Each
subfigure in Figure 4.5 shows a box containing a higher scale representation of the
most interesting zone. Note that changing the values of λ gives us different points
which are similar to the Pareto front points in multi-objective problems [219].

Subfigure 4.5a, showing breastc performance results, clearly proves that C and
MS can be competitive objectives. Observe that classifiers which are moved through
higher Sensitivity values loose performance in the global classification accuracy. A
trade-off point between increasing Minimum Sensitivity without loosing lot of global
accuracy could be classifiers trained with λ = 0.4 or λ = 0.5. Looking at the gener-
alization results in Subfigure 4.5b, it can be checked that the degree of over-fitting is
not excessively high, and the behaviour of the fitness function for different λ values
is quite similar to that in the training set.

Subfigures 4.5c and 4.5d show a very clear example of how a balance between the
two objectives is necessary. The results shows that when only considering C (λ =

0.0) the method cannot improve results for all the classes. Furthermore, Subfigure
4.5d shows that using only MS (λ = 1.0) as the unique classification performance
measurement is also not suitable. Then, we can consider that λ = 0.4, λ = 0.5 and
λ = 0.6 have the best results for improving the two measures.

Finally, we comment the BTX performance results. In Subfigure 4.5e it can be seen
that λ value has not a very significant influence on the results achieved by E-ELM-CS.
However, it should be noticed that using only MS (λ = 1.0) is not suitable, and the
best results are obtained by using only C (λ = 0.0). This makes sense since BTX is a
perfectly balanced dataset (see number of patterns per class distribution for the BTX
dataset in Table 4.2) and with a not very high noise level [234], so the behaviour of
the classifiers is usually very similar for all classes.

In this preliminary analysis we can conclude that there is no rule for determining
the best λ value. Therefore, we propose to optimize this parameter by the cross
validation procedure described in the previous section.

4.7.2 Comparison with other evolutionary approaches

For motivational purposes, in this section we compare the performance of E-ELM-
CS algorithm with the original E-ELM algorithm (equivalent to E-ELM-CS with λ =

0.0), and two evolutionary training algorithms for MLP which are not specifically
designed for dealing with class imbalance:

MPANN [215]. MPANN is a MOEA based on differential evolution with two
objectives; one is to minimize the MSE and the other is to minimize ANN
complexity (in terms of the number of hidden units). The Back Propagation al-
gorithm [236, p. 578] is used in MPANN as local search. We have implemented
a Java version using the pseudocode shown in [215] and the framework for evo-
lutionary computation JCLEC [237]. We select both extremes of the Pareto front
to compare the results with those from E-ELM-CS: the methodology is named
MPANN-MSE when the extreme selected is that providing the best MSE; or it is
called MPANN-HN if the extreme that is chosen has the best complexity value
(number of hidden units).
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Figure 4.6: Comparison of E-ELM-CS, E-ELM, TRAINDIFFEVOL, MPANN-MSE and
MPANN-HN methods for balance database in the generalization set. Observe
the performance differences between E-ELM and E-ELM-CS.

TRAINDIFFEVOL (differential evolution training algorithm for neural networks)
[227]. TRAINDIFFEVOL is an algorithm to train feed forward MLP neural net-
works based on differential evolution. This algorithm uses the MSE regularized
by the mean squared weights and biases for guiding the networks training. To
obtain the Sensitivity for each class, a modification of the source code provided
by the author5 has been implemented.

As an example of the usefulness of the (MS, C) representation, as well as the in-
fluence of the fitness function, Figure 4.6 depicts the Minimum Sensitivity-Accuracy
generalization results (mean of the results of best individuals of 30 runs) of the four
evolutionary methodologies for the balance dataset in the (MS, C) space. A visual
inspection of the figure allows us to easily observe the difference in the performance
of E-ELM-CS with respect to E-ELM , TRAINDIFFEVOL and MPANN.

4.7.3 Comparison with related methods and reference classifiers

The purpose of the experiments is to evaluate which fitness function is more suit-
able for E-ELM-CS with the purpose of simultaneous optimization of C and MS.
Computational cost, in terms of training time T, is also considered. Results are com-
pared with related state of the art methods.

There were ten UCI repository datasets with different features under study [233]
(see Table 4.3). The experimental design was conducted using a stratified holdout
procedure with 30 runs of each algorithm, where approximately 75% of the patterns
were randomly selected for the training set and the remainder 25% for the gener-
alization set. All the data have been standardized and the experiments have been
conducted using Matlab R2009a running on a Ubuntu Server (x86_64 architecture)
on an Intel Xeon at 2.00GHz with 8 Gb RAM.

5 http://www.it.lut.fi/project/nngenetic/

http://www.it.lut.fi/project/nngenetic/
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Table 4.3: Datasets used for the experiments comparing the three proposals and related meth-
ods.

Dataset Size #Input #Classes Distribution p∗

Two classes

breastc-W 699 9 2 (458,241) 0.3448

Card 690 51 2 (307,383) 0.4449

Hepatitis 155 19 2 (32,123) 0.2069

Multi-class

balance 625 4 3 (288,49,288) 0.0784

gene 3175 120 3 (762,765,1648) 0.2400

iris 150 4 3 (50,50,50) 0.3333

lymph 148 38 4 (2,81,61,4) 0.0135

anneal 898 59 5 (8,99,684,67,40) 0.0089

glass 214 9 6 (70,76,17,13,9,29) 0.0421

zoo 101 16 7 (41,20,5,13,4,8,10) 0.0396

4.7.3.1 Machine learning methods used for comparison purposes

The experimental section compares two basically different methodologies with dif-
ferent extensions for training MLP neural networks. The first group of classifiers are
variations of the Evolutionary ELM (results are also compared to the original ELM
and OPELM [228]):

EELM. This method is set up with two fitness functions: CCR (EELM(C)) and
MS (EELM(S)).

EELMCS. This algorithm is set up with the three fitness functions proposed in
Section 4.6.1: FλCS (EELMCS(CS)), FλR (EELMCS(R)) and FλE (EELMCS(E)).

The second type of neural network training algorithm is the memetic Pareto dif-
ferential evolution neural network (MPDENN) presented in [238–240]. MPDENN is
a MOEA based on the Pareto differential evolution algorithm (PDE) presented by
Abbass et al. [214], Abbass [241]. MPDENN trains ANNs considering C and MS as
conflicting objectives which should be simultaneously optimized. In addition, MP-
DENN applies a local search procedure to some individuals in the population. The
local search algorithm used is the improved Resilient Backpropagation (iRprop+) al-
gorithm [217]. However, whereas local search can improve classification performance
it is computationally costly. For this reason, MPDENN can be used without local
search; when doing so, we will refer to it to as PDENN.

In addition, the experiments include two additional popular learning algorithms:
a standard MLP trained with Resilient backpropagation (Rprop) algorithm [242] and
the Support Vector Machine (SVM) [44, 58]. The Rprop Matlab’s implementation
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is used for the former algorithm, while Cost Support Vector Classificacion (SVC)
available in libSVM 3.0 [170, 243] is used as the SVM classifier implementation.

All the ELM-based neural network methods were trained with different algorithms
(ELM, OPELM, EELM and EELMCS) using the Sigmoid function as the basis function.
For ELM and OPELM, the number of hidden nodes gradually increases in intervals
of 5 within the range [5, 200] and the nearly optimal number of nodes for ELM and
OPELM are then selected based on the 10-fold cross-validation method using the
training set. For the E-ELM-CS, the range of the interval has been reduced for cross-
validation of the number of hidden nodes to [5, 20]. PDENN and MPDENN automat-
ically prune nodes, so a range of maximum and minimum numbers of hidden nodes
must be provided. We have used the range [1, 6] according to the author’s recom-
mendations. Regarding Rprop, a nested cross-validation was also performed using a
range of hidden nodes of [1, 30] with an interval of one. The radial basis kernel was
used with the SVC method. For the selection of SVC hyperparameters (regularization
parameter, C, and width of the Gaussian functions, γ), a grid search was performed
with a 10-fold cross-validation, using the following ranges: C ∈ {10−1, 100, . . . , 102}
and γ ∈ {10−8, 10−6, . . . , 102}. For all the methods, except PDENN and MPDENN,
the optimal hyperparameters θ̂ cross-validation criteria was the following:

θ̂ = arg max
θi

Cθi + MSθi

2
. (4.21)

Table 4.4: Mean statistical results and average rankings

Method CG(%) RCG MSG(%) RMSG T(secs.) RT

EELMCS(R) 86.19 5.50 58.86 2.45 1.42E+002 7.00

EELMCS(E) 86.87 5.50 56.52 4.95 1.46E+002 8.20

EELMCS(CS) 86.47 6.50 58.50 4.75 1.39E+002 7.00

EELM(C) 86.78 5.40 48.81 6.75 1.41E+002 7.00

EELM(MS) 84.86 8.60 57.54 5.20 1.40E+002 6.80

OPELM 85.71 7.10 42.70 10.35 3.32E+000 3.70

ELM 86.09 7.20 44.33 7.90 9.12E–002 1.70

PDE(C) 82.92 10.25 41.81 9.45 2.08E+003 10.05

PDE(MS) 82.06 10.55 51.62 7.60 2.08E+003 10.35

HPDE(C) 86.07 6.90 46.91 7.25 1.37E+006 12.25

HPDE(MS) 84.89 8.30 55.60 6.35 1.37E+006 12.35

Rprop 85.06 7.20 38.05 11.20 8.39E-001 3.30

SVC 88.60 2.00 53.97 6.80 1.44E-001 1.30

4.7.3.2 Statistical results

Table A.1 in Appendix A presents results in values of the mean and the standard
deviation (SD) for %CG, %MSG and T (training time in seconds) for 30 runs. Subindex
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G in %CG and %MSG indicates that results belongs to the generalization dataset. For
these tables and Table 4.4 the best result is in bold face and the second best result is
in italics.
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Figure 4.7: Ranking tests for CCR, MS and training time.

The mean rankings of CG, MSG and T are obtained to compare the different meth-
ods (see Table 4.4). A Friedman’s non-parametric test for a significance level of
α = 0.1 has been carried out to determine the statistical significance of the differ-
ences in rank in each method. The test rejected the null-hypothesis stating that all
algorithms performed equally in the mean ranking of CG, MSG and T so a Nemenyi
post-hoc test [244] (α = 0.1) was used to compare all the methods and their variations.
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Table 4.5: Table with the different algorithms compared with the EELMCS(R) (i.e. the Control
Algorithm) using the Holm procedure in terms of MSG.

i Algorithm z p α
′
Holm

1 Rprop 5.02398 0.00000 0.00833

2 OPELM 4.53594 0.00001 0.00909

3 PDE(C) 4.01918 0.00006 0.01000

4 ELM 3.12922 0.00175 0.01111

5 PDE(MS) 2.95697 0.00311 0.01250

6 HPDE(C) 2.75601 0.00585 0.01429

7 SVC 2.49764 0.01250 0.01667

8 EELM(C) 2.46893 0.01355 0.02000

9 HPDE(MS) 2.23926 0.02514 0.02500

10 EELM(MS) 1.57897 0.11434 0.03333

11 EELMCS(E) 1.43542 0.15117 0.05000

12 EELMCS(CS) 1.32059 0.18664 0.10000

Figure 4.7 shows Critical Difference (CD) diagrams proposed in [244]. Subfigure 4.7a
shows that there are two groups of classifiers regarding CG. SVC has the best CG rank-
ing mean but it does not have significant differences compared with EELM variants
but with EELM(MS). Regarding, MSG, all the methods but Rprop, OPELM, PDE(C)
and ELM have no significant differences when they are compared to one another.
Regarding T, all the non-evolutionary approaches have similar performance, in ad-
dition, EELM methods (except EELMCS(E)) show similar computational time. As
expected, the Pareto based solutions have the highest computational cost (especially
the hybrid approaches).

Based on the robustness regarding CG and MSG, and considering computational
cost, EELMCS(R) promises to be the best alternative. However, when comparing
them to each other for MSG, EELMCS(R) shows no significant differences with EELM(C).
From a statistical point of view, this can be explained considering the effects of the
results of competitive methods, that is, the presence of EELM related methods. There-
fore, the more powerful Holm post-hoc test is used to compare EELMCS(R) to all the
other classifiers in order to justify our proposal. The Holm test is a multiple com-
parison procedure that can work with a control algorithm and compares it to the re-
mainder methods [244]. The test statistics for comparing the i-th and the j-th method
using this procedure is

z =
Ri − Rj√

k(k+1)
6N

, (4.22)

where k is the number of algorithms and N the number of datasets. The z value
is used to find the corresponding probability from the table of normal distribution,
which is then compared to an appropriate level of confidence α. Holm’s test adjusts
the value for α in order to compensate for multiple comparisons.
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The results of the Holm tests (α = 0.1) for MSG can be seen in Table 4.5, using
the corresponding p and adjusted α (α

′
Holm) values. The EELMCS(R) is used as the

Control Method. The horizontal line shows the division between methods signifi-
cantly different from EELMCS(R) (in terms of MSG when p < α

′
Holm) and methods

which are not significantly different. Considering the results of these tests, it can be
concluded that the EELMCS(R) algorithm obtains a significantly higher ranking of
MSG when compared to most of the remainder methods, especially ELM, OPELM
and EELM(C). Standard methods such as Rprop or SVC are not competitive when
considering MS.

4.8 conclusions

This chapter presents an efficient alternative to the Pareto based approach to train
multi-class classifiers with a simultaneous improvement in C and MS.

Three different fitness functions were evaluated by extending the Evolutionary Ex-
treme Learning Machine algorithm for training ANNs and were compared with dif-
ferent machine learning methodologies. Continuous fitness functions have proved to
be more robust and suitable for evolutionary algorithms (see results details in Table
A.1).

Statistical tests demonstrate that experimentally the E-ELM-CS(R) methodology
gets similar results in CCR with respect to the other methods. However, statistical
tests for MS demonstrate experimentally that it is significantly different than most al-
gorithms. Considering the methods with the best significant results in CCR and MS,
and considering the statistical test for training time T, we conclude that the weighted
combination of global RMSE and the worst classified class RMSE give competitive
results. Apart from the computational time improvement, this type of alternatives
presents an unique candidate solution, then there is no need of further expert deci-
sions for selecting solutions from the Pareto front.

MS results in anneal, balance, glass or hepatitis datasets (see Table Table A.1) show
that our proposal is specially suitable for problems with high number of classes
and/or with small size classes, i.e. imbalanced datasets. Experimental results show
that some methods focus only on the biggest classes.
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N E W P R O P O S A L S F O R O R D I N A L R E G R E S S I O N

Summary. This chapter presents the major contributions of this thesis to
the ordinal regression field. The contributions of this chapter are three.

The first contribution establishes the basis for linking the class imbalance
problem and the ordinal regression problem with a new proposal.

The second contribution is the latent variable modelling based on sam-
pling random values from several probability distributions (one for each
class) in order to reconstruct the latent variable. This is the result of the
initial research in modelling the ordinal latent space.

Motivated by this second contribution, an alternative approach to gener-
ate the latent variable in a more guided way is proposed, trying to exploit
data ordering in the input space and mapping it to the latent variable.
This is achieved by the third contribution, the proposed Pairwise Class
Distance (PCD) projection which is integrated into a classification algo-
rithm with robust results. This last contribution occupies most of the
chapter.
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http://dx.doi.org/10.1007/978-3-642-38679-4_62.

5.1 motivation and objectives

In this chapter we present three new methodologies which contribute to the ordi-
nal regression state of the art. The first proposal is the Evolutionary Extreme Learn-
ing Machine for Ordinal Regression (E-ELMOR), which adapts some of the improve-
ments made in Chapter 4 to ordinal regression. The E-ELMOR outperforms related
methods considering both magnitude of errors and class imbalance. This approach
is completely covered in Section 5.2.

Apart from the first proposal, in this chapter we focus on latent variable meth-
ods, also named to as threshold methods. These ordinal classification approaches
perform a projection from the input space to a one-dimensional (latent) space that
is partitioned into a sequence of intervals or thresholds (one for each class). Class
identity of a novel input pattern is then decided based on the interval its projection
falls into. This chapter is focused on the exploration of new ways of modelling latent
variable for ordinal classification. In the proposals, we reformulate the classification
problem as a standard regression problem, so that class labels are turned into a con-
tinuous regression response variable. Well designed and tested regression methods
can be then applied to the problem derived.

The second contribution is a latent variable modelling as a random variable that
is sampled, depending on the pattern class, from a set of different probability distri-
butions. We call this alternative Numerical Variable Reconstruction (NVR) and it is
fully covered in Section 5.3. Although this proposal works well for some datasets, we
observed that it was not robust enough when considering a wider range of datasets
and more performance metrics.

The NVR approach does not assume any ordering in the input space, but only
on the labels space, which is the strict definition of ordinal regression. In spite of
this strict definition (see discussion in Section 3.2 of Chapter 3), some authors such
as Hühn and Hüllermeier [17] have extended the definition of OR by suggesting
that the label ordering should be somehow present in the input space. Therefore,
a motivation to develop ways of modelling the latent variable by using information
about pattern distribution in the input space is found.

Most of latent variable methods train the projection as part of the overall model
fitting in order to improve classification performance. However, as with any latent
model fitting, direct construction hints one may have about the desired form of the
latent model can prove very useful for obtaining high quality models. The key idea
of the third proposal is to construct such a projection model directly, using insights
about the class distribution obtained from pairwise distance calculations. This direct
modelling is done trough our proposed Pairwise Class Distance (PCD) projection,
and the associated classifier is called Pairwise Class Distances for Ordinal Classifica-
tion (PCDOC). The approach is extensively evaluated with eight nominal and ordinal
classifiers methods, ten real world ordinal classification datasets, and four different
performance measures. The PCDOC methodology obtained the best results in av-

http://dx.doi.org/10.1007/978-3-642-38679-4_62
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erage ranking when considering three of the four performance metrics considered,
although significant differences are found only for some of the methods. Also, after
observing other methods internal behaviour in the latent space, we conclude that,
for some datasets, the internal projection of those methods do not fully reflect the
intra-class behaviour of the patterns. Our method is intrinsically simple, intuitive
and easily understandable, yet, highly competitive with state-of-the-art approaches
to ordinal classification.

Therefore, while the second proposal performs an indirect modelling of the latent
variable, the third proposal performs a direct modelling of the latent variable1.

The rest of the chapter is organized as follows. The E-ELMOR method is proposed
and evaluated in Section 5.2. The NVR proposal is presented and covered with exper-
iments in Section 5.3. Section 5.4 explains the proposed PCD data projection method
and the associated classification algorithm. It also evaluates the behaviour of the
projection using two synthetic datasets and the performance of the classification algo-
rithm under situations that may hamper classification. For this purpose, an specific
synthetic data generator has been developed. The section also presents experiments
with real problems, and discusses the experimental results. For this chapter we will
follow the mathematical notation and threshold methods definition presented in sec-
tions 3.2 and 3.3.3 of Chapter 3.

5.2 proposal 1 : evolutionary extreme learning machine for ordinal

regression

In this section we propose an evolutionary Extreme Learning Machine for ordinal
regression. We modify the Extreme Learning Machine for Ordinal Regression (EL-
MOR) model proposed by Deng et al. [133] with an extension to allow a probabilistic
formulation of the neural network, for which we propose a fitness function that con-
siders restrictions related to ordinal regression problems. We evaluate the proposal
with eight datasets, five related methods and three specific performance metrics. In
this section we work with the formulation presented in Section 4.5.2.

5.2.1 ELM for Ordinal Regression

As briefly introduced in Chapter 3, the ELM has been adapted to ordinal regression
by Deng et. al [133] being the key of their approach the output coding strategies
that impose the class ordering restriction. That work evaluates single multi-class
and multi-model binary classifiers. The single ELM was found to obtain slightly
better generalization results for benchmark datasets and also to report the lowest
computational time for training. In the present work, the single ELM alternative will
be used. In the single ELMOR approach the output coding is the OrderedPartitions
targets binary decomposition by Frank and Hall [27] (see Section 3.3.2.1 in Chapter
3), an example of a five classes (Q = 5) decomposition is shown in Table 5.1.

1 Note that if we strictly follow the statistical definition of latent variable, that type of variables cannot be
directly modelled. However we keep the term latent variable because of the relation of the method to
other ordinal regression methods that work with a latent space.
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Table 5.1: Example of nominal and ordinal output coding for five classes (Q = 5).

1-of-Q coding OrderedPartitions

+1 −1 −1 −1 −1

−1 +1 −1 −1 −1

−1 −1 +1 −1 −1

−1 −1 −1 +1 −1

−1 −1 −1 −1 +1





+1,−1,−1,−1,−1

+1,+1,−1,−1,−1

+1,+1,+1,−1,−1

+1,+1,+1,+1,−1

+1,+1,+1,+1,+1



In this way, the solutions provided by the β̂ = H†T expression (see Section 4.5.2)
tend to produce order aware models. For the generalization phase, the loss-based
decoding approach [127] is applied, i.e. the chosen label is that which minimizes the
exponential loss:

ŷ = arg min
1≤q≤Q

dL
(
Mq, g(x)

)
,

where ŷ is the predicted class label, being ŷ ∈ Y = {C1, C2, . . . , CQ} containing Q
labels, Mq is the code associated to class Cq (i.e. each of the rows of the coding matrix
at the right of Table 5.1), g(x) = f (x,θ) is the vector of predictions given by the
MLP model in Eq. (4.9) (see Section 4.5.2 in Chapter 4), and dL

(
Mq, g(x)

)
is the

exponential loss function:

dL
(
Mq, g(x)

)
=

Q

∑
i=1

exp
(
−Mqi · gi(x)

)
. (5.1)

5.2.2 Proposed method

This section presents our Evolutionary Extreme Learning Machine for Ordinal
Regression (E-ELMOR) model and the associated training algorithm. First, the E-
ELMOR extends the ELMOR model to obtain a probabilistic output. For doing that,
the softmax transformation layer [200] is added to the ELMOR model using the neg-
ative exponential losses of Eq. (5.1):

pq = pq(x, θq) =
exp(−dL

(
Mq, g(x)

)
)

∑Q
i=1 exp(−dL (Mi, g(x)))

, 1 ≤ q ≤ Q, (5.2)

where pq is the posterior probability that a pattern x has of belonging to class Cq

and this probability should be maximized for the actual class and minimized (or
ideally be zero) for the rest of the classes. This formulation is used for evaluating
the individuals in the evolutionary process but not for solving the ELMOR system of
equations.

In the case of ordinal regression, the posterior probability must decrease from
the true class to more distant classes. This has been pointed out in the work of
Pinto da Costa et al. [18]. In that work an unimodal output function is imposed to
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Table 5.2: Example of an absolute cost matrix (A) and an absolute cost matrix plus the matrix
of ones (C = A + 1) for five classes (Q = 5).

A C = A + 1

0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0





1 2 3 4 5

2 1 2 3 4

3 2 1 2 3

4 3 2 1 2

5 4 3 2 1



the neural network model, and the probability function monotonically decreases as
the classes are more distant from the true one.

According to the previous observation, we propose a fitness function for guiding
the evolutionary optimization that simultaneously considers two features of a classi-
fier:

1. Misclassification of non-adjacent classes should be more penalized as the differ-
ence between class labels grows.

2. The posterior probability should be unimodal and monotonically decrease for
non-adjacent classes.

In this way, not only the right class output is considered, but also the posterior
probabilities with respect to the wrong classes are reduced. In order to satisfy these
restrictions, we propose the weighted root mean square error (WRMSE).

First, we design the type of cost associated with the errors. Let us define the abso-
lute cost matrix as A, where the element aij = |i− j| is equal to the difference in the
number of categories, aij = |i− j|. The absolute cost matrix is used, for instance, for
calculating the MAE, being i the actual label and j the predicted label. An example of
an absolute cost matrix for five classes is shown in Table 5.2. In the case of WRMSE,
A cannot be directly applied because it would suppress information about the poste-
rior probability of the correct class (see Eq. (5.3)). Then, we add a square matrix of
ones 1 so that our final cost matrix is C = A + 1 (see an example in Table 5.2).

Second, according to the model output defined in Eq. (5.2), we define the weighted
root mean square error (WRMSE) associated to a pattern as:

e =
∑Q

q=1(ciq

√
(tq − pq)2)

Q
, (5.3)

where i is index of the true target and ciq represents the cost of errors associated to
the q output tq of the neural network coded in matrix C (see Table 5.2). Finally, the
total error of the prediction is defined as:

WRMSE =
∑N

i=1(ei)

N
. (5.4)
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Table 5.3: Characteristics of the benchmark datasets

Dataset #Pat. #Attr. #Classes Class distribution

automobile (AU) 205 71 6 (3, 22, 67, 54, 32, 27)

balance-scale (BS) 625 4 3 (288, 49, 288)

bondrate (BO) 57 37 5 (6, 33, 12, 5, 1)

contact-lenses (CL) 24 6 3 (15, 5, 4)

eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)

LEV (LE) 1000 4 5 (93, 280, 403, 197, 27)

newthyroid (NT) 215 5 3 (30, 150, 35)

pasture (PA) 36 25 3 (12, 12, 12)

For ending this section, it should be noticed that in a single model multi-class clas-
sifier the RMSE has the interesting property of selecting solutions that consider good
classification performance of all classes simultaneously [109]. In the case of MZE,
only one network output (the one with maximum value) contributes to the error
function, and it does not contribute with the output value. However, for RMSE it is
straightforward to check that each model output (posterior probabilities) contributes
to the error function. Then, the model decision thresholds and posteriors will tend
to be more discriminative. This implicit pressure over the posteriors is even more
severe in the case of WRMSE.

5.2.3 Experimental section

This section presents experiments comparing the present approach with several al-
ternatives, with special attention to the E-ELM and the ELMOR as reference methods.
The E-ELMOR is implemented as an extension of the original E-ELM [177].

5.2.3.1 Datasets and related methods

Table 5.3 shows the characteristics of the eight datasets included in the experiments.
The table shows the number of patterns, attributes and classes, and also the class
distribution (number of patterns per class). The publicly available real ordinal regres-
sion datasets were extracted from benchmark repositories (UCI [233] and mldata.org

[248]). The experimental design includes 30 stratified random splits (with 75% of
patterns for training and the remainder for generalization).

In addition to the E-ELM, ELMOR and the proposed method (E-ELMOR), we in-
clude the following alternatives in the experimental section:

The POM algorithm [139], with the logit link function.

The GPOR method [41].
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NNOR [131] neural network with decomposition scheme by Frank and Hall in
[27].

The algorithms hyperparameters were adjusted by a grid search using MAE as
the parameter selection criteria. For NNOR, the number of hidden neurons, M,
was selected by considering the following values, M ∈ {5, 10, 20, 30, 40}. The sig-
moidal activation function was considered for the hidden neurons. For ELMOR,
E-ELM and E-ELMOR, higher numbers of hidden neurons are considered, M ∈
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, given that it relies on sufficiently informative
random projections [132]. With regards to the GPOR algorithm, the hyperparame-
ters are determined by part of the optimization process. For E-ELM and E-ELMOR
the evolutionary parameters values are the same as used at [177]. The number of
iterations was 50 and the population size 40.

Table 5.4: Comparison of E-ELMOR to other nominal and ordinal related classification meth-
ods. The mean and standard deviation of the generalization results are reported
for each dataset, as well as the mean ranking. The best result is in bold face and
the second best result in italics.

MZE Mean Mean MZE rank

Method/DataSet AU BS BO CL EU LE NT PA

E-ELM 0.453 0.152 0.544 0.344 0.507 0.393 0.152 0.389 4.94

ELMOR 0.384 0.082 0.476 0.383 0.440 0.371 0.051 0.389 3.31

GPOR 0.389 0.034 0.422 0.394 0.315 0.388 0.034 0.478 3.13

NNOR 0.376 0.039 0.500 0.294 0.418 0.373 0.035 0.237 2.31

POM 0.533 0.092 0.656 0.378 0.841 0.380 0.028 0.504 4.69

E-ELMOR 0.360 0.092 0.533 0.306 0.394 0.372 0.035 0.333 2.63

MAE Mean Mean MAE rank

Method/DataSet AU BS BO CL EU LE NT PA

E-ELM 0.688 0.216 0.722 0.517 0.718 0.439 0.154 0.404 5.06

ELMOR 0.542 0.089 0.649 0.522 0.531 0.406 0.052 0.404 3.44

GPOR 0.594 0.034 0.624 0.511 0.331 0.422 0.034 0.489 2.75

NNOR 0.503 0.044 0.671 0.456 0.476 0.408 0.035 0.241 2.44

POM 0.953 0.111 0.947 0.533 2.029 0.415 0.028 0.585 5.00

E-ELMOR 0.510 0.108 0.644 0.433 0.447 0.407 0.035 0.344 2.31

AMAE Mean Mean AMAE rank

Method/DataSet AU BS BO CL EU LE NT PA

E-ELM 0.813 0.426 1.119 0.545 0.778 0.632 0.212 0.404 4.75

ELMOR 0.649 0.176 1.168 0.531 0.575 0.611 0.114 0.404 3.94

GPOR 0.792 0.051 1.360 0.651 0.362 0.654 0.062 0.489 4.13

NNOR 0.566 0.066 1.135 0.493 0.506 0.608 0.059 0.241 2.19

POM 1.026 0.107 1.103 0.535 1.990 0.632 0.050 0.585 4.06

E-ELMOR 0.592 0.172 1.041 0.463 0.489 0.608 0.052 0.344 1.94
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Table 5.5: Table with the different algorithms compared with E-ELMOR using the Holm pro-
cedure (α = 0.10) in terms of AMAE. The horizontal line shows the division
between methods significantly different from E-ELMOR.

i Algorithm z p α
′
Holm

1 E-ELM 3.0067 0.0026 0.0200

2 GPOR 2.3385 0.0194 0.0250

3 POM 2.2717 0.0231 0.0333

4 ELMOR 2.1381 0.0325 0.0500

5 NNOR 0.2673 0.7893 0.1000

5.2.3.2 Experimental results

Table 5.4 shows mean generalization performance of all the algorithms including
metrics described at Section 3.2.4. The mean rankings of MZE, MAE and AMAE
are obtained to compare the different methods. A Friedman’s non-parametric test
for a significance level of α = 0.05 has been carried out to determine the statistical
significance of the differences in rank in each method. The test rejected the null-
hypothesis stating that all algorithms performed equally in the mean ranking of the
three metrics. We will only further examine AMAE metric, since it is the most robust
one. For this purpose, we have applied the Holm post-hoc test to compare E-ELMOR
to all the other classifiers in order to justify our proposal. The Holm test is a multiple
comparison procedure that works with a control algorithm (E-ELMOR) and compares
it to the remainder methods [244]. Results of the test are shown in Table 5.5, which
shows that our proposal improves on all the methods’ performance except NNOR
for α = 0.10, and there are only statistical differences with E-ELM for α = 0.05. The
second best performance in AMAE was for NNOR.

5.2.4 Conclusions and future work

In this section, we have adapted the ELMOR model to the Evolutionary ELM. We
have proposed the weighed Root Mean Squared Error (RMSE) error function to guide
the algorithm. Based on theoretical analysis and experimental results, we justify the
proposal compared to the reference methods and other ordinal regression techniques.
Future work involves the design and experiments with new output codes and associ-
ated error functions and to adapt the mechanisms in Chapter 4 to improve classifica-
tion performance for imbalanced ordinal regression datasets.

5.3 proposal 2 : latent variable modelling with probability distri-
butions

In this section we present the second proposal for explicitly dealing with ordinal
classification problems. The approach lies between the regular regression models
and the threshold models. The regular regression is addressed by generating ran-
dom values from triangular probability distributions. There is a different triangular
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distribution for modelling (generating) the random values of each ordinal class. For
each pattern, these values are considered as the regression response variable. In this
way we turn a classification problem into a regression problem. Then, the method-
ology is suitable for any kind of regression model. With this problem reformulation
we are imposing the class order in the new regression dataset, and we assume that
the trained regressor should reflect this order.

Regarding the threshold model, the limits of the triangular distributions are used
as thresholds for properly assigning a pattern to a class. Even thought the simplicity
of this idea, experimental results show that the proposal is competitive regarding
state-of-the-art ordinal classification methods, specially when considering an order
sensitive performance metric.

5.3.1 Numerical Variable Reconstruction

The center of this first proposal is to turn a classification problem into a regression
problem so that the class structures are reflected in the regression variable. This
procedure is called Numerical Variable Reconstruction (NVR). NVR has two main
steps: the numerical variable reconstruction itself, i.e. the random values generation
during the classifier training procedure; and the classification procedure based on the
predicted values of the regression response variable.

5.3.1.1 Theoretical basis

Let us consider an ordinal classification problem as defined in Section 3.2. Our goal
is to find a classifier g that is capable of assigning, according to the best fit possible,
a pattern to its class depending on its characteristics. It should also be designed to
include the information related to the ordinality of the classes. Thus, the ordered
structure of Y should be used to determine g.

As previously mentioned, a simple and intuitive way to make this calculation is to
assume the existence of a one-dimensional latent variable z = φ (x) that is a function
of the characteristics observed and takes on the underlying order mentioned in the
previous paragraph2. The concept of order is included in that the lower values of z
will most likely correspond to class C1, reaching a limit, say z1, on class C2 and so on
for the rest of the classes3. Thus, the classifier will be given by

g (x) = Cq if φ (x) ∈
(
zq−1, zq

)
,

where we allow (z0, zQ) = (−∞, ∞).
This is one of the approaches to this problem, obtaining different solutions depend-

ing on the kind of function considered for φ and the strategy used to determine the
limit values for z. The drawback here is how to choose an optimal projection function,
such that the limits can be adequately adjusted comparing the observed classifications
and estimated over the training set D =

{
(xi, yi) | xi ∈ X ⊆ RK, yi ∈ Y , i = 1, . . . , N

}
,

with xi = (xi1, xi2, . . . , xiK) (see ordinal regression problem formulation in Section
3.2).

2 Note that for convenience, in this section we express the latent variable formulation in a different way
of the formulation in Section 3.3.3.

3 Note in other sections we use the symbol θ for these thresholds. Here we use z and u in order to
difference between the latent unobservable variable z and the generated random variable u.
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Our approach does not attempt to determine z (and therefore φ). Instead, we
present it as a random variable according to the distribution function u = F (z) =

G (x) = F (φ (x)), where due to the inherent monotony in F, we can have some
advantages with respect to the previously mentioned procedure:

F (z) is a random variable in the interval [0, 1], regardless of how z is a function
of x. Thus, not knowing φ and F is no longer inconvenient.

Since the values for zq determine the limits between classes, and the distribution
function is monotonous, its images uq = F

(
zq
)

will restrain the probabilities to
the interval that belongs to each class. Also, since the relative size fi of those
intervals in D estimates its probability, the boundaries will be given by

0 = u0 < û1 = f1 < û2 = f1 + f2 < . . . < uQ = 1.

Provided all this, each pattern in D is assigned to a random number. In order
to do this, and assuming we are distributing pattern i that belongs to class Cq, we
generate a value in the interval

(
ûq−1, ûq

)
using the Fq probability distribution, which

generates values in that interval. Note there is a different Fq modelling each class Cq.
Calling this value Ui and bearing in mind the relationship between u and x we have
a new set D′ =

{
(xi, Ui) : xi ∈ X ⊂ Rk, Ui ∈ [0, 1]

}
where the new response values

meet two conditions:

They indicate the class they belong to, given the way they have been assigned.

They can be obtained theoretically using U = G (x).

Thus, the initial classification problem becomes a regression one, expected to be easier
to solve in order to estimate the function G.

Once the value for Ĝ is obtained (estimated from G), the classification of new
patterns becomes immediate assigning class q as long as we can verify ûq−1 < Ĝ (x) <
ûq.

The training procedure, then, can be stated as follows:

1. Calculate, using the training set D, the a priori probabilities of each one of the
classes: fq =

nq
N where nq and N are the sizes with respect to class Cq and the

set D.

2. Obtain the classification limits using the empirical distribution function ûq =

∑
q
j=0 f j.

3. For each of he nq patterns belonging to class Cq, generate a random value Ui
using the triangular symmetric distributions in the interval between ûq−1 and
ûq.

4. Make a regression model considering the sample (x, U) where vectors x of each
class are paired with the U values of the previous step. Let Ĝ be the resulting
regressor, which is independent of the model and the training algorithm.

Finally, for every unseen pattern x, Ĝ (x) is determined and assigned to class Cq,
verifying ûq−1 < Ĝ (x) < ûq.
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5.3.1.2 NVR using the triangular probability distribution

In order to simplify the mathematical issues regarding the underlying probability
distribution for U modelling, we choose the triangular distribution for this model.
The triangular distribution is a continuous probability distribution with lower limit
a, upper limit b and mode c, where a < b and a ≤ c ≤ b. Since the triangular
distribution is continuous, the inverse transform sampling method can be used to
generate random values from the uniform distribution [249], which is the common
distribution provided by every programming language or environment.

For a Q class problem, Uq, q = 1, 2, . . . , Q, different random variables are used
to generate values representing all the patterns x ∈ Cq. Therefore, Q triangular
distributions can be used for modelling these Uq random variables which compose
U . Thus, each triangular distribution will be defined as Fq(Uq|aq, bq, cq).

Every triangular distribution must be adapted based on the assumptions done
in the previous section. Firstly, the aq and bq parameters must be adjusted so that
the bq − aq distance is proportional to the a priori probability nq/N a pattern has
of belonging to a class Cq. Regarding parameter cq, for simplicity, it is defined as
the middle point between aq and bq, although in general it can be any value in the
interval [aq, bq]. In our approach, all the triangular distributions are adjusted under
the restriction of U ∈ [0, 1]

Once the triangular distributions are set up, they can be used for generating ran-
dom values zi for each pattern xi by using the corresponding Fq(Uq|aq, bq, cq), there-
fore:

zi = Fq(Uq|aq, bq, cq) for xi ∈ Cq. (5.5)

At the end of this procedure the ordinal classification problem will be turned into
a regression problem in the form of Ĝ = φ(x), where φ is a regression model.

Assuming we have a trained regression model φ for predicting Ĝ values, these
estimated values must be mapped to classes in order to perform the original classifi-
cation task. In the case of the triangular distribution, this is straightforward. That is
because the Q different thresholds uq, described in Subsection 5.3.1.1, correspond to
the aq+1 and bq parameters. Then, for classifying a pattern in class C1, 0 ≤ Ĝ ≤ u1,
where u1 = b1 = a2. A pattern will be assigned to class C2, if u1 < Ĝ ≤ u2, where
u2 = b2 = a3, and so on. Regarding the last class CQ, patterns will be classified
in this class if uQ−1 < Ĝ ≤ 1, where uQ−1 = bQ−1. An example of the triangular
distributions parameters set up can be seen in Fig. 5.1.

5.3.2 Experiments

This section presents the experiments done for evaluating the NVR proposal.

5.3.2.1 Ordinal classification datasets and experimental design

For these experiments, we have collected a set of real ordinal classification datasets
which are publicly available at the UCI repository [233] and at the mldata.org dataset
repository [250] (see Table 5.6 for datasets description).

Regarding the experimental design, we have considered two different options de-
pending on the stochastic nature of the method. The proposed method (NVR) is
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Figure 5.1: NVR with triangular probability distributions example.

Table 5.6: Datasets used for the experiments

Dataset Size #Input #Classes Classes Distribution

automobile 205 71 6 (3,22,67,54,32,27)

balance-scale 625 4 3 (288,49,288)

ERA 1000 4 9 (92,142,181,172,158,118,88,31,18)

LEV 1000 4 5 (93,280,403,197,27)

tae 151 54 3 (49,50,52)

non-deterministic because the Ui values are randomly generated using the triangu-
lar distributions and the seed used for the method determines the obtained results.
For this method, we perform 10 times a holdout validation and 3 repetitions for each
holdout (obtaining a total of 10× 3 = 30 different results). Each holdout is a stratified
random division of the data, where approximately 75% of the instances are used for
the training set and 25% of them for the test set (maintaining the original distribution
of classes for both sets). For the deterministic methods (all of them except NVR), we
perform 30 times a stratified holdout validation using 75% of the instances for the
training set and 25% of them for the generalization set, what implies a total of 30

different results. The partitions are the same for all the deterministic methods.
In this way, a total of 30 error measures has been obtained for all the methods

compared, which guarantees a proper statistical significance of the results.
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5.3.2.2 Experimental results

Table 5.7: Comparison of SVR-NVR to other ordinal classification methods and SVC: Results
of MZE (MZEG) and MAE (MAEG) on the generalization set

Dataset Method MZE mean MZE std MAE mean MAE std

automobile SVC 0.3423 0.0659 0.4205 0.0837

GPOR-ARD 0.3891 0.0726 0.5942 0.1307

RED-SVM 0.3160 0.0548 0.3929 0.0730

SVOREX 0.6333 0.0685 0.9276 0.1149

SVORIM 0.6385 0.0552 0.9327 0.0918

SVR-NVR 0.3449 0.0746 0.4128 0.1052

balance-scale SVC 0.0000 0.0000 0.0000 0.0000

GPOR-ARD 0.0342 0.0118 0.0342 0.0118

RED-SVM 0.0000 0.0000 0.0000 0.0000

SVOREX 0.0000 0.0000 0.0000 0.0000

SVORIM 0.0000 0.0000 0.0000 0.0000

SVR-NVR 0.0571 0.0213 0.0597 0.0229

ERA SVC 0.7492 0.0194 1.2575 0.0744

GPOR-ARD 0.7121 0.0270 1.2413 0.0505

RED-SVM 0.7551 0.0239 1.2172 0.0431

SVOREX 0.7349 0.0305 1.2108 0.0363

SVORIM 0.7579 0.0213 1.2143 0.0343

SVR-NVR 0.7409 0.0182 1.1996 0.0528

LEV SVC 0.3723 0.0297 0.4080 0.0343

GPOR-ARD 0.3877 0.0301 0.4219 0.0308

RED-SVM 0.3764 0.0238 0.4133 0.0265

SVOREX 0.3724 0.0218 0.4073 0.0244

SVORIM 0.3757 0.0289 0.4119 0.0318

SVR-NVR 0.3744 0.0304 0.4007 0.0308

tae SVC 0.5281 0.0896 0.5886 0.0834

GPOR-ARD 0.6719 0.0407 0.8614 0.1551

RED-SVM 0.4781 0.0735 0.5149 0.0865

SVOREX 0.4421 0.0752 0.4816 0.0922

SVORIM 0.4711 0.0836 0.5149 0.0851

SVR-NVR 0.4044 0.0305 0.4360 0.0256

For comparison purposes, different state-of-the-art methods have been included
in the experimentation (for more details about these methods, please check Section
5.4.7.2):

Gaussian Processes for Ordinal Regression (GPOR) [41] with ARD feature se-
lection (we will refer the algorithm to as GPOR-ARD).
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Support vector ordinal regression with implicit (SVORIM) and explicit (SVORIM)
constraints [33, 39].

Reduction from cost-sensitive ordinal ranking to weighted binary classification
(RED) with SVM (RED-SVM) [30, 31].

The Cost Support Vector Classification (SVC) available in libSVM 3.0 [170, 243]
is included as a reference nominal classifier.

In our approach, the SVR algorithm is used as the regressor model, so the method
is called SVR-NVR. The ε-SVR available in libSVM [170, 243] is used.

Regarding the algorithms hyper-parameters, the following procedure has been ap-
plied. For the Support Vector algorithms, i.e. SVC, RED-SVM, SVOREX, SVORIM
and ε-SVR, the corresponding hyper-parameters (regularization parameter, C, and
width of the Gaussian functions, γ), were adjusted using a grid search with a 10-fold
cross-validation, considering the following ranges: C ∈ {10−3, 10−2, . . . , 103} and
γ ∈ {10−3, 10−2, . . . , 103}. Regarding ε-SVR, it has the additional ε parameter. The ε

parameter values were ε ∈ {100, 101, . . . , 103}. For GPOR-ARD no hyper-parameters
were set up since the method optimizes the associated parameters itself. All the
methods were configured to use the Gaussian kernel.

Table 5.8: Average MZE and MAE results and mean rankings

SVR-NVR SVC GPOR-ARD RED-SVM SVOREX SVORIM

MZEG 0.3843 0.4390 0.3984 0.3851 0.4365 0.4486

RMZEG 3.2 4.4 2.9 3.5 2.7 4.3

MAEG 0.5018 0.6306 0.5349 0.5077 0.6055 0.6148

RMAEG 2.2 5.2 3.9 3.2 2.7 3.8

The experiments have been carried out by following the experimental design de-
scribed in previous subsection. Results considering mean and standard deviation in
MZE and MAE are shown in Table 5.7 (see Section 3.2.4 in Chapter 3 for metrics
description). The best statistical result is in bold face and the second best result in
italics.

In order to compare these results, a non-parametric Friedman [251] test has been
employed. The average MZEG and average MAEG results in the generalization sets
were used for the Friedman test. The test accepted the null-hypothesis that all algo-
rithms perform equally well when α = 0.05. Therefore, we can conclude that our
method reaches the state-of-the-art methods regarding ordinal classification. In ad-
dition, for information purposes, Table 5.8 shows the average results in MZEG and
MAEG for each method, as well as the average ranking for each performance met-
ric, this is RMZEG and RMAEG . Table 5.8 shows that SVR-NVR has the best average
MZE results and the third mean MZE rank, whereas it has the best performance for
average MAE results and mean ranking.
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5.3.3 Conclusions

In this section, a novel method for generally adapting regression models, such as
artificial neural networks or support vector machines, was presented. The ordinal
classification problem is reformulated as a regression problem by the reconstruction
of a numerical variable, which represents the different ordered class labels.

The NVR algorithm is implemented with the triangular probability distribution
for the variable reconstruction, and with the Support Vector Regression algorithm as
the regression method. Experimental results demonstrate that our method reaches
the state-of-the-art related algorithms. Despite the simplicity and generality of the
method, results are competitive in comparison with very specific methods for ordinal
regression.

5.4 proposal 3 : pairwise class distances projection for ordinal clas-
sification

In this section the PCD and PCDOC proposal is fully described and the PCD pro-
jection is analysed with some synthetic datasets in order to observe its suitability both
for linear and nonlinear cases. Then, the section follows with controlled experiments
to observe the influence of dimensionality, class overlapping and data multi-modality
in the performance of PCDOC. The following part presents a thorough analysis of re-
sults with benchmark datasets from real world problems. Finally, the last part sums
up key conclusions and points to future work.

5.4.1 Introduction and motivation

While threshold approaches offer an interesting perspective on the problem of
ordinal classification, they learn the projection from the input space onto the one-
dimensional latent space only indirectly as part of the overall model fitting. As with
any latent model fitting, direct construction hints one may have about the desired
form of the latent model can prove very useful for obtaining high quality models.
The key idea of the PCDOC is to construct such a projection model directly, using
insights about the class distribution obtained from pairwise distance calculations. In-
deed, our motivation stems from the fact that the order information should also be
present in the data input space and it could be interesting to take advantage from it
to construct a useful variable for ordering the patterns using the ordinal scale. Ad-
ditionally, regression is clearly the most natural way to approximate this continuous
variable. As a result, we propose to construct the ordinal classifier in two stages:
1) the input data is first projected into a one dimensional variable by considering
the relative position of the patterns in the input space, and, 2) a standard regression
algorithm is applied to learn a function to predict new values of this derived variable.

The main contribution of the PCDOC is the projection onto a one dimensional vari-
able, which is done by a guided projection process (PCD). This process exploits the
ordinal space distribution of patterns in the input space. A measure of how ‘well’
a pattern is located within its corresponding class region is defined by considering
the distances between patterns of the adjacent classes in the ordinal scale. Then, a
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projection interval is defined for each class, and the centres of those intervals (for non-
boundary classes) are associated with the ‘best’ located patterns for the corresponding
classes (quantified by the measure mentioned above). For the boundary classes (first
and last in the class order), the extreme end points of their projection intervals are
associated with the most separated patterns of those classes. All the other patterns
are assigned proportional positions in their corresponding class intervals, again ac-
cording to their ‘goodness’ values expressing how ‘well’ a pattern is located within its
class. We refer to this projection as Pairwise Class Distance (PCD) based projection.
In Section 5.4.4, the behaviour of this projection is evaluated over synthetic datasets,
showing an intuitive response and a good ability to separate adjacent classes even in
nonlinear settings.

Once the mapping is done, our framework allows to design effective ordinal algo-
rithms based on well-tuned regression approaches. The final classifier constructed by
combining PCD and a regressor is called Pairwise Class Distances for Ordinal Classifica-
tion (PCDOC). In this contribution, PCDOC is implemented using ε-Support Vector
Regression (ε-SVR) algorithm [44, 252] as the base regressor, although any other
properly handled regression method could be used. We carry out an extensive set of
experiments on ten real world ordinal regression datasets, comparing our approach
with eight state-of-the-art methods. Our method, though simple, holds out very well.
Under four complementary performance metrics, the proposed method obtained the
best mean ranking for three of the four metrics.

5.4.2 Latent variable modelling formulation

Latent variable models or threshold models consider the ordinal scale as the result
of coarse measurements of a continuous variable, called the latent variable. The
threshold model can be represented with the following general expression:

f (x,θ) =


C1, if g(x) ≤ θ1,

C2, if θ1 < g(x) ≤ θ2,
...

CQ, if g(x) > θQ−1,

(5.6)

where g : X → R is the function that projects data space onto the one-dimensional
latent space Z ⊆ R and θ = θ1, . . . , θQ−1 (where θ1 < . . . < θQ−1) are the thresholds
that divide the space into ordered intervals corresponding to the classes.

In the PCDOC proposal, it is assumed that a model φ : X → Z can be found
that links data items x ∈ X with their latent space representation φ(x) ∈ Z . We
place that proposal in the context of latent variable models for ordinal classification
because of its similarity to these models. In contrast to other models employing a
one dimensional latent space, e.g. POM [36], we do not consider variable thresholds,
but impose fixed values for θ. However, suitable dimensionality reduction is given
due attention: first, by trying to exploit the ordinal structure of the space X , and
second we explicitly put external pressure on the margins between the classes in Z
(see Section 5.4.4).

Our approach is different from the previous ones in that it does not implicitly
learn latent representations of the training inputs. Instead, we impose how training
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inputs xi are going to be represented through zi = φ(xi). Then, this representation
is generalized to the whole input space by training a regressor g on the (xi, zi) pairs,
resulting in a projection function g : X → Z . To ease the presentation, we will
sometimes write training input patterns x as x(q) to explicitly reflect their class label
rank q (i.e. the class label of x is Cq).

5.4.3 Pairwise Class Distance (PCD) projection

To describe the Pairwise Class Distance (PCD) projection, first, we define a measure
wx(q) of “how well” a pattern x(q) is placed within other instances of class Cq, by
considering its Euclidean distances to the patterns in adjacent classes. This is done on
the assumption of ordinal pattern distribution in the input space X . For calculating
this measure, the minimum distances of a pattern x(q)i to patterns in the previous
and next classes, Cq−1 and Cq+1, respectively, are used. The minimum distance to the
previous/next class is

κ(x(q)i , q± 1) = min
x(q±1)

j

{
||x(q)i − x(q±1)

j ||
}

, (5.7)

where ||x− x′|| is the Euclidean distance between x, x′ ∈ RK. Then,

w
x(q)i

=



κ(x(q)i , q + 1)

max
x(q)n

{
κ(x(q)n , q + 1)

} , if q = 1,

κ(x(q)i , q− 1) + κ(x(q)i , q + 1)

max
x(q)n

{
κ(x(q)n , q− 1) + κ(x(q)n , q + 1)

} , if q ∈ {2, . . . , Q− 1} ,

κ(x(q)i , q− 1)

max
x(q)n

{
κ(x(q)n , q− 1)

} , if q = Q ,

(5.8)

where the sum of the minimum distances of a pattern with respect to adjacent classes
is normalized across all patterns of the class, so that w

x(q)i
has a maximum value of 1.

Figure 5.2 shows the idea of minimum distances for each pattern with respect
to the patterns of the adjacent classes. In this figure, patterns of the second class are
considered. The example illustrates how the wx(2) value is obtained for the pattern x(2)

marked with a circle. For distances between x(2) and class 1 patterns, the item x(1) has
the minimum distance, so κ(x(2), 1) is calculated by using this pattern. For distances
between x(2) and class 3 patterns, κ(x(2), 3) is the minimum distance between x(2) and
x(3).

By using w
x(q)i

, we can derive a latent variable value zi ∈ Z . Before continuing,

thresholds must be defined in order to stablish the intervals on Z which correspond
to each class, so that calculated values for zi may be positioned on the proper inter-
val. Also, predicted values ẑi of unseen data would be classified in different classes
according to these thresholds (see Subsection 5.4.5), in a similar way to any other
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Figure 5.2: Illustration of the idea of minimum Pairwise Class Distances. All the minimum
distances of patterns of class C2 regarding patterns of adjacent classes are painted
with lines. x(2) is the point we want to calculate its associated wx(2) .

threshold model. For the sake of simplicity, Z is defined between 0 and 1, and the
thresholds are positioned in the uniform manner4 :

θ = {θ1, θ2, . . . , θQ} = {1/Q, 2/Q, . . . , 1} . (5.9)

Considering θ, the centres cq ∈ {c1, c2, . . . , cQ} for Z values belonging to class Cq

are set to: c1 = 0, cQ = 1 and

cq =
q
Q
− 1

2Q
, q = 2, 3, ...Q− 1. (5.10)

We now construct zi values for training inputs x(q)i by considering the following

criteria. If x(q)i has similar minimum distances κ(x(q)i , q− 1) and κ(x(q)i , q + 1) (and
consequently a high value of w

x(q)i
), the resulting zi value should be closer to ci, so that

intuitively, we consider this pattern as well located within its class. If κ(x(q)i , q− 1) and

κ(x(q)i , q+ 1) are very different (and consequently a low value of w
x(q)i

is obtained), the

pattern x(q)i is closer to one of these classes and so the corresponding zi value should
be closer to the interval of Z values of the closest adjacent class, q− 1 or q + 1. This
idea is formailized in the following expression:

4 This does not in any way hamper generality, as our regressors defining g will be smooth nonlinear
functions.
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Figure 5.3: Example of the generated zi values on a synthetic dataset with a linear order
relationship.

zi = φ
(

x(q)i

)
=



c1 + (1− w
x(1)i

) · 1
Q , if q = 1,

cq − (1− w
x(q)i

) · 1
2Q , if q ∈ {2, . . . , Q− 1} and

κ(x(q)i , q− 1) ≤ κ(x(q)i , q + 1),

cq + (1− w
x(q)i

) · 1
2Q , if q ∈ {2, . . . , Q− 1} and

κ(x(q)i , q− 1) > κ(x(q)i , q + 1),

cQ − (1− w
x(Q)

i
) · 1

Q , if q = Q,

(5.11)

where w
x(q)i

is defined in Eq. (5.8), cq is the centre of class interval corresponding to

Cq (see Eq. (5.10)) and Q is the number of classes. Eq. (5.11) guarantees that all z
values lie in the correct class interval5. This methodology for data projection is called
Pairwise Class Distances (PCD).

5.4.4 Analysis of the proposed projection in synthetic datasets

For illustration purposes, we generated synthetic ordinal classification datasets in
X ∈ R2 with four classes (Q = 4). Figure 5.3 shows the patterns of a synthetic
dataset, SyntheticLinearOrder, with a linear order between classes, whereas Figure 5.4
shows SyntheticNonLinearOrder dataset, with a nonlinear ordinal relationship between
classes. Points at SyntheticLinearOrder were generated by adding a uniform noise
to points of a line. Points in SyntheticNonLinearOrder were generated by adding a

5 Recall that the threshold set θ delimiting class intervals is defined in Eq. (5.9).
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(a) General disposition of the points of the dataset.
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(b) Upper left area of the dataset.

Figure 5.4: Example of the generated zi values on the synthetic dataset with a nonlinear class
order structure. Figure on the right shows a zooming over the upper left area at
the center of the dataset shown on the left.

Gaussian noise to points on a spiral. In both figures, points belonging to different
classes are marked with different colours and symbols. Besides the points, the figures
also illustrate basic concepts of the proposed method on example points (surrounded
by grey circles). For these points, the minimum distances are illustrated with lines of
the corresponding class colour. The minimum distance of a point to the previous and
next class patterns are marked with dashed and solid lines, respectively. For selected
points we show the value of the PCD projection (calculated using Eq. (5.11)).

In Figure 5.3 it can be seen that the z value increases for patterns of the higher
classes, and this value varies depending of the position of the pattern x(q) in the
space with respect to the patterns x(q−1) and x(q+1) of adjacent classes. Extreme
values, z = 0.0 and z = 1.0 correspond to the patterns more distant from the classes
1 and Q respectively (and with a maximum wx(q) value). SyntheticNonLinearOrder
in Figure 5.4 is designed to demonstrate that the PCD projection is suitable for more
complex ordinal topologies of the data. This is, for any topology in an ordinal dataset,
it is expected that patterns of classes q− 1 and q + 1 are always the closest ones to
the patterns of class q, and PCD will take advantage from this situation to decide
the relative order of the pattern within its class, even when this is produced in a
nonlinear manner.

Figure 5.5a and Figure 5.5b show histograms of the PCD projections from the syn-
thetic datasets in Figure 5.3 and Figure 5.4, respectively. The thresholds θ that divide
the z values of the different classes are also included. Observe that the z values of the
different classes are clearly separated, and that they are compacted within a range
which is always smaller than the range initially indicated by the thresholds. This is
due to the scaling of the z values in Eq. (5.8), where the wx(q) value cannot be zero, so
a pattern can never be located ‘close’ to the boundary separating intervals of adjacent
classes.
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(a) SyntheticLinearOrder dataset.
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(b) SyntheticNonLinearOrder dataset.

Figure 5.5: Histograms of the PCD projection of the synthetic datasets.

5.4.5 Algorithm for ordinal classification

PCDOC Training: {g,θ} = PCDOCtr(D).
Require: Training dataset D.
Ensure: Regressor (g) and thresholds (θ).

1: Calculate thresholds θ and centres c according to Eq. (5.9) and Eq. (5.10).
2: For each pattern, calculate zi according to Eq. (5.11): zi = φ(x(q)i ).
3: Build a regressor g, considering z as the regression response variable: z = g(x).
4: return {g,θ}

Figure 5.6: PCDOC regression training algorithm pseudocode.

PCDOC Prediction: ŷ = PCDOCpr(x, g,θ).
Require: Regressor (g), thresholds (θ) and test input (x).
Ensure: Predicted label (ŷ).

1: Predict the latent variable value using the regressor g: ẑ = g(x).
2: Map the ẑ value to the corresponding class using f as defined in Eq. (5.6): ŷ =

f (ẑ,θ).
3: return ŷ

Figure 5.7: PCDOC classification algorithm for unseen data.

Once the PCD projections have been obtained for all training inputs, we construct a
new training set T′ =

{
(xi, φ(x(yi)

i ) | (xi, yi) ∈ D
}

. Any generic regression tool can be
trained on T′ to obtain the projection function g : X → Z . In this respect, our method
is quite general, allowing the user to choose his or her favorite regression method or
any other improved regression tool introduced in the future. The resulting algorithm,
named Pairwise Class Distances for Ordinal Classification (PCDOC), is described in
two steps in Figure 5.6 and Figure 5.7.
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It is expected that formulating the problem as a regression problem would help
the model to capture the ordinal structure of the input6 and output spaces, and
their relationship. In addition, due to the nature of the regression problem, it is
expected that the performance of the classification task will be improved regarding
metrics that consider the difference between the predicted and actual classes within
the linear class order, such as MAE or AMAE, or the correlation between the target
and predicted values, such as τb. Experimental results confirm this hypothesis in
Section 5.4.7.3.

5.4.6 Experiments with synthetic data

This section addresses the PCDOC performance analysis in some controlled ex-
periments, i.e. with controlled synthetically generated data. For this purpose we
have developed a specific synthetic data generation tool which is motivated in the
following section.

5.4.6.1 Motivation to the use of synthetic data

Ideally, dataset selection (real-world or synthetic ones) must test specific issues of
a method identified after a complete theoretical analysis. However, this is not the
general experimental tendency as Macià has pointed out in Chapter 2 of her PhD.
Thesis, where a criticism of experimental assessment of learners based on arbitrary
selection of datasets is done [253]. Macià et. al remark the necessity of a proper
selection of experimental data guided by data complexity measures [254].

Thereafter, synthetic datasets can be useful in a variety of situations, specifically
when new machine learning models and training algorithms are developed or when
trying to seek the weaknesses of an specific method. In contrast to real-world data,
synthetic datasets provide a controlled environment for analysing concrete critic
points such as outlier tolerance, data dimensionality influence and class imbalance,
among others.

Even though the relevance of proper synthetic data generation, scientific works
on data generation methods based on controlled statistical data properties are scarce
[255], as pointed by [256]: “Surprisingly, little work has been done on systematically
generating artificial datasets for the analysis and evaluation of data analysis algo-
rithms in data mining area.”.

With the above motivation, in this thesis, a framework for synthetic data generation
have been developed with special attention to pattern order in the space, data dimen-
sionality, class overlapping and data multimodality. Up to the authors knowledge
there is no framework dealing with such a controlled data generator for covering
these features. Variables such as position, width and overlapping of data distribu-
tions in the n-dimensional space are controlled by considering them as n-spheres.
Then, we achieve full control over data topology and over a set of relevant statistical
properties of the data. More details about the synthetic data generator are provided
at Appendix B and associated publication [246]. The source code of the synthetic data

6 In the case of ordinal regression, the ordinal structure is only a hypothesis about the input data.
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generator is available on a public website7 and it is released under the GNU General
Public License version 3 (GPLv3) [257].
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(a) Synthetic Gaussian dataset with σ = 0.167.
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(b) Synthetic Gaussian dataset with σ = 0.667.

Figure 5.8: Synthetic Gaussian dataset example for two dimensions.

5.4.6.2 Analysis of the influence of dimensionality and class overlapping.

This section analyses the performance of the PCDOC algorithm under situations
that may hamper classification: class overlapping and large dimensionality of the
data. For this purpose, different synthetic datasets have been generated by sampling
random points from Q Gaussian distributions, where Q is the number of classes, so
that each class points are random samples of the corresponding Gaussian distribution.
In order to easily control the overlap of the classes, the variance (σ2) is kept constant
independently of the number of dimensions (K). In addition, the Q centres (means
µq) are set up in order to keep the distance of 1 between two adjacent class means
independently of K. Under this situation, each coordinate of adjacent class means is
separated by 4µ = 1/

√
K so that µ1 = 0, µ2 = µ1 +4µ, µ3 = µ2 +4µ and so on.

The number of features tested (input space dimensionality) were K ∈ {10, 50, 100}
and the different width values are σ ∈ {0.167, 0.333, 0.500, 0.667, 0.800, 1.000}, so that
18 datasets were generated. The number of patterns for each class from one to four
was 10, 100, 100 and 5. Figure 5.8 shows two of these datasets generated with different
variance values for K = 2.

For these experiments, our approach uses the Support Vector Regression (SVR)
algorithm as the model for the z variable (the method will be referred to as SVR-
PCDOC). We have also included three methods as baseline methods: the C-Support
Vector Classification SVC [44, 58], the Support Vector Ordinal Regression with ex-
plicit constraints (SVOREX) [33, 39] and the Kernel Discriminant Learning for Ordi-
nal Regression (KDLOR) [90]. As in the next experimental section (Section 5.4.7), the
experimental design includes 30 stratified random splits (with 75% of patterns for
training and the remainder for generalization). The mean MAE and AMAE gener-
alization results are used for comparison purposes at Figure 5.9. For further details

7 http://www.uco.es/grupos/ayrna/iwann2013-syntheticdatagenerator

http://www.uco.es/grupos/ayrna/iwann2013-syntheticdatagenerator
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(a) MAE with K = 10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

A
M

A
E

 

 

SVC

SVOREX

KDLOR

SVR−PCDOC

(b) AMAE with K = 10.
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(c) MAE with K = 50.
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(d) AMAE with K = 50.
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(e) MAE with K = 100.
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(f) AMAE with K = 100.

Figure 5.9: MAE and AMAE performance for synthetic Gaussian dataset with distribution
x = N (µ, σ2IK×K) and x ∈ X ⊆ RK, where IK×K is the identity matrix.

about experimental procedure and hyper-parameters optimization please refer to the
next experimental section (Subsection 5.4.7.2).

From the results depicted at Figure 5.9, we can generally conclude that the three
methods, except KDLOR, have similar MAE performance degradation with the in-
crease of class overlapping and dimensionality. Figure 5.9a shows that SVR-PCDOC
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has a slightly worse performance than SVC and SVOREX. However, in experiments
with higher K (Figures 5.9c and 5.9e) the performance of the three ordinal meth-
ods varies in a similar way. In partigular, in Figure 5.9e we can observe that SVC
performance decreases with high overlapping and high dimensionality, whereas the
ordinal methods have similar performance here. From the analysis of the AMAE
performance we can conclude that KDLOR outperforms the rest of the methods in
cases of low class overlapping. Regarding our method, we can conclude that com-
pared with the other methods its AMAE performance is worse in the case of low
class overlap. However, in general, our method seems more robust when the class
overlap increases.

5.4.6.3 Analysis of the influence of data multimodality.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

Class 1 points

Class 1 3σ

Class 2 points

Class 2 3σ

Class 3 points

Class 3 3σ

Class 4 points

Class 4 3σ

µq

(a)
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

Class 1 points

Class 1 3σ

Class 2 points

Class 2 3σ

Class 3 points

Class 3 3σ

Class 4 points

Class 4 3σ

µq

(b)

Figure 5.10: Illustration of the unimodal and bimodal cases of the synthetic Gaussian dataset
example for K = 2 and σ2 = 0.25.

This section extends the above experiments to the case of multimodal data, the
datasets are generated with K = 2 and σ2 = 0.25, and the number of modes per
class is varied. Figure 5.10a presents the unimodal case. The datasets with more
modes per class are generated in the following way. A Gaussian distribution is set up
as in the previous section, with center µq. For each class, each additional Gaussian
distribution is centered in a random location within the hyper-sphere with center
µq and radius 0.75. Then, patterns are sampled from each distribution. For each
class, we considered different number of modes, from one mode to four modes. The
number of patterns generated for each mode was 36, 90, 90 and 24 for class 1, 2, 3 and
4, respectively, using the same number for all modes of a class. An example of the
bimodal case (two Gaussian distributions per class) is shown in Figure 5.10b, having
72, 180, 180 and 48 patterns for class 1, 2, 3 and 4, respectively.

Experiments were carried out as in the previous section, and MAE and AMAE
generalization results are depicted in Figure 5.11. Regarding MAE, Figure 5.11a re-
veals that the fours methods perform similarly in datasets with one and four modes
but they differ on performance for the two and three modes. Only considering MAE,
SVRPCDOC has the worse performance in case two and three. Nevertheless, con-
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Figure 5.11: MAE and AMAE performance for synthetic Gaussian dataset with distribution
x = N (µ, σ2IK×K) and x ∈ X ⊆ RK, where IK×K is the identity matrix (being
K = 2 and σ2 = 0.25 for all the synthetic datasets).

sidering AMAE results at Figure 5.11b, SVRPCDOC and KDLOR achieve the best
results. The different behaviour of the methods depending on the performance mea-
sure can be explained by observing the nature of the bimodal dataset (see Figure
5.10b), where the majority of the patterns are from classes two and three. In this
context, the optimization done by SVOREX and SVC can move the decision thressh-
olds to better classify patterns of these two classes at the expense of misclassifying
class one and four patterns, especially patterns of those classes placed on the class
boundaries (see Figure 5.10b).

5.4.7 Experiments with real problems

In this section we report on extensive experiments that were performed to check
the competitiveness of the proposed methodology. The source code of PCDOC is
available on a public website8 and it is released under the GNU General Public Li-
cense version 3 (GPLv3) [257]. The website also includes synthetic dataset analysis
code and real ordinal datasets partitions used for the experiments.

5.4.7.1 Ordinal classification datasets and experimental design

To the best of our knowledge, there are no public specific dataset repositories for
real ordinal classification problems. The ordinal regression benchmark dataset repos-
itory provided by Chu et. al [41] is the most widely used repository in the literature.
However, these datasets are not real ordinal classification datasets but regression ones.
To turn regression into ordinal classification, the target variable was discretized into
Q different bins (representing classes), with equal frequency or equal width. How-
ever, there are potential problems with this approach. If equal frequency labelling is
considered, the datasets do not exhibit some characteristics of typical complex clas-

8 http://www.uco.es/grupos/ayrna/neco-pairwisedistances

http://www.uco.es/grupos/ayrna/neco-pairwisedistances
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Table 5.9: Datasets used for the experiments (N is the number of patterns, K is the number of
attributes and Q is the number of classes).

Dataset N K Q Ordered Class Distribution

automobile 205 71 6 (3,22,67,54,32,27)

bondrate 57 37 5 (6,33,12,5,1)

contact-lenses 24 6 3 (15,5,4)

eucalyptus 736 91 5 (180,107,130,214,105)

newthyroid 215 5 3 (30,150,35)

pasture 36 25 3 (12,12,12)

squash-stored 52 51 3 (23,21,8)

squash-unstored 52 52 3 (24,24,4)

tae 151 54 3 (49,50,52)

winequality-red 1599 11 6 (10,53,681,638,199,18)

sification tasks, such as class imbalance. On the other hand, severe class imbalance
can be introduced by using the same binning width. Finally, as the actual target
regression variable exists with observed values, the classification problem can be sim-
pler than on those datasets where the variable z is really unobservable and has to be
modelled.

We have therefore decided to use a set of real ordinal classification datasets pub-
licly available at the UCI [233] and mldata.org repositories [250] (see Table 5.9 for data
description). All of them are ordinal classification problems, although one can find
literature where the ordering information is discarded. The nature of the target vari-
able is now analysed for two example datasets. bondrate dataset is a classification
problem where the purpose is to assign the right ordered category to bonds, being
the category labels {C1 = AAA, C2 = AA, C3 = A, C4 = BBB, C5 = BB}. These labels
represent the quality of a bond and are assigned by credit rating agencies, AAA being
the highest quality and BB the worst one. In this case, classes AAA, AA, A are more
similar than classes BBB and BB so that no assumptions should be done about the
distance between classes both in the input and latent space. Other example is eucalyp-
tus dataset, in this case the problem is to predict which eucalyptus seedlots are best
for soil conservation in a seasonally dry hill country. Being the classes {C1 = none,
C2 = low, C3 = average, C4 = good, C5 = best}, it cannot be assumed an equal width
for each class in the latent space.

Regarding the experimental set up, 30 different random splits of the datasets have
been considered, with 75% and 25% of the instances in the training and test sets
respectively. The partitions were the same for all compared methods, and, since
all of them are deterministic, one model was obtained and evaluated (in the test
(generalization) set), for each split. All nominal attributes were transformed into as
many binary attributes as the number of categories. All the datasets were property
standardized.
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5.4.7.2 Existing methods used for comparison purposes

For comparison purposes, different state-of-the-art methods have been included in
the experimentation. These methods are the following (for method descriptions see
Section 3.4 in Chapter 3):

Gaussian Processes for Ordinal Regression (GPOR) [41].

Support vector ordinal regression with implicit (SVORIM) and explicit (SVORIM)
constraints [33, 39].

Reduction from cost-sensitive ordinal ranking to weighted binary classification
(RED) with SVM (RED-SVM) [30, 31].

A Simple Approach to Ordinal Regression (ASAOR) with C4.5 (ASAOR(C4.5))
[27].

The Proportional Odds Model (POM) [36].

Kernel Discriminant Learning for Ordinal Regression (KDLOR) [90].

The Cost Support Vector Classification (SVC) available in libSVM 3.0 [170, 243]
is included as a reference nominal classifier.

In our approach, the Support Vector Regression (SVR) algorithm is used as the
model for the z variable. The method will be referred to by the acronym SVR-PCDOC.
The ε-SVR available in libSVM is used.

Model selection is an important issue and involves selecting the best hyper-parameter
combination for all the methods compared. All the methods were configured to
use the Gaussian kernel. For the support vector algorithms, i.e. SVC, RED-SVM,
SVOREX, SVORIM and ε-SVR, the corresponding hyper-parameters (regularization
parameter, C, and width of the Gaussian functions, γ), were adjusted using a grid
search over each of the 30 training sets by a 5-fold nested cross-validation with the
following ranges: C ∈ {10−3, 10−2, . . . , 103} and γ ∈ {10−3, 10−2, . . . , 103}. Regard-
ing ε-SVR, the additional ε parameter has to be adjusted. The range considered was
ε ∈ {100, 101, 102, 103}. For KDLOR, the width of the Gaussian kernel was adjusted
by using the range γ ∈ {10−3, 10−2, . . . , 103}, and the regularization parameter, u,
for avoiding the singularity problem values were u ∈ {10−5, 10−4, 10−3, 10−2}. POM
and ASAOR(C4.5) methods have not hyper-parameters. Finally, GPOR-ARD has no
hyper-parameters to fix, since the method optimizes the associated parameters itself.

For all the methods, the MAE measure is used as the performance metric for guid-
ing the grid search to be consistent with the authors of the different state-of-the-art
methods. The grid search procedure of SVC at libSVM has been modified in order to
use MAE as the criteria for hyper-parameter selection.

5.4.7.3 Performance results

Tables 5.10 and 5.11 outline the results through the mean and standard deviation
(SD) of AccG, MAEG, AMAEG and τbG across the 30 hold-out splits, where the
subindex G indicates that results were obtained on the (hold-out) generalization fold.
As a summary, Table 5.12 shows, for each performance metric, the mean values of the
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metrics across all the datasets, and the mean ranking values when comparing the
different methods (R = 1 for the best performing method and R = 9 for the worst
one). To enhance readability, in Tables 5.10, 5.11 and 5.12 the best and second-best
results are in bold face and italics, respectively.

Regarding Tables 5.10 and 5.11, it can be seen that the majority of methods are very
competitive. The best performing method depends on the considered performance
metric, as it can be seen from the mean rankings. This is also true when separately
considering each of the datasets, and the performance for some datasets varies notice-
ably if AMAEG is considered instead of MAEG (see bondrate, contact-lenses, eucalyptus,
squash-unstored and winequality-red). In the case of winequality-red, it happens that the
second worse method in MAEG, ASAOR(C4.5), is the second best one for AMAEG.
It is worthwhile to mention that for pasture dataset the mean MAEG and AMAEG

are the same, which is due to the fact that pasture is a perfectly balanced dataset (see
metrics definition in Section 3.2.4). In the case of tae, MAEG and AMAEG are very
similar since the patterns distribution across classes is very similar. Regarding τbG, it
is interesting to highlight that a value close to zero of this metric reveals that the clas-
sifier predictions are not related to the real values, this is, the classifier performance
is similar to the performance of a trivial classifier. This happens for GPOR method
in the bondrate, squash-stored and tae datasets, and for POM in the eucalyptus dataset.

From Table 5.12, it can be observed how best mean value across the different
datasets is not always translated into best mean ranking (see AccG and RAccG columns).
We now analyze the results in greater detail, highlighting the best and second best
performances. When considering AccG, SVC is clearly the best method, both in aver-
age performance and ranking. KDLOR and SVR-PCDOC are the second best meth-
ods, in average value and ranking, respectively. However, results are very different
for all the other measures, where the order is included in the evaluation. The best
method in average MAEG and ranking of MAEG is SVR-PCDOC and the second best
ranks are for KDLOR and RED-SVM, having similar mean MAEG. AMAE is a better
alternative than MAE when the distribution of patterns is not balanced, and this is
clearly the case for several datasets (see Table 5.9). The best values for mean AMAEG

and mean ranking are obtained by SVR-PCDOC, and the second ones are those re-
ported by KDLOR. Finally, the τbG is revealing the most clear differences. When using
this metric, the best mean values and ranks are reported by SVR-PCDOC, followed
by KDLOR.

5.4.7.4 Statistical comparisons between methods

To quantify whether a statistical difference exists between any of these algorithms,
a procedure for comparing multiple classifiers over multiple datasets is employed
[244]. First of all, a Friedman’s non-parametric test [251] with a significance level of
α = 0.05 has been carried out to determine the statistical significance of the differ-
ences in the mean ranks of Table 5.12 for each different measure. The test rejected
the null-hypothesis stating that the differences in mean rankings of AccG, MAEG,
AMAEG and τbG obtained by the different algorithms were statistically significant
(with α = 0.05). Specifically, the confidence interval for this number of datasets and
algorithms is C0 = (0, F(α=0.05) = 2.070), and the corresponding F-value for each
metric were 3.257 /∈ C0, 4.821 /∈ C0, 4.184 /∈ C0 and 5.099 /∈ C0, respectively.
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Table 5.10: Comparison of SVR-PCDOC to other ordinal classification methods and SVC (Acc and MAE). The mean and standard deviation (SD) of the
generalization results are reported for each dataset. The best statistical result is in bold face and the second best result in italics.

Acc MeanSD

Method/
DataSet

automobile bondrate contact-
lenses

eucalyptus newthyroid pasture squash-
stored

squash-
unstored

tae winequality-
red

ASAOR(C4.5) 0.6960.059 0.5330.074 0.7500.085 0.6390.036 0.9170.039 0.7520.145 0.6030.118 0.7740.101 0.3950.058 0.6030.021
GPOR 0.6110.073 0.5780.032 0.6060.093 0.6860.034 0.9660.024 0.5220.178 0.4510.101 0.6440.162 0.3280.041 0.6060.015
KLDOR 0.7220.058 0.5420.087 0.5890.174 0.6110.028 0.9720.019 0.6780.125 0.7030.112 0.8280.104 0.5550.052 0.6030.017
POM 0.4670.194 0.3440.161 0.6220.138 0.1590.036 0.9720.022 0.4960.154 0.3820.152 0.3490.143 0.5120.089 0.5940.017
SVC 0.6970.062 0.5560.069 0.7940.129 0.6530.037 0.9670.025 0.6330.134 0.6560.127 0.7000.082 0.5390.062 0.6360.021
RED-SVM 0.6840.055 0.5530.073 0.7000.111 0.6510.024 0.9690.022 0.6480.134 0.6640.104 0.7490.086 0.5220.074 0.6180.022
SVOREX 0.6650.068 0.5530.096 0.6500.127 0.6470.029 0.9670.022 0.6300.125 0.6280.133 0.7180.128 0.5810.060 0.6290.022
SVORIM 0.6390.076 0.5470.092 0.6330.127 0.6390.028 0.9690.021 0.6670.120 0.6390.118 0.7640.103 0.5900.066 0.6300.022
SVR-PCDOC 0.6780.060 0.5400.101 0.6890.095 0.6480.029 0.9730.020 0.6560.103 0.6850.123 0.6950.084 0.5820.064 0.6310.022

MAE MeanSD

Method/
DataSet

automobile bondrate contact-
lenses

eucalyptus newthyroid pasture squash-
stored

squash-
unstored

tae winequality-
red

ASAOR(C4.5) 0.4010.095 0.6240.079 0.3670.154 0.3840.042 0.0830.039 0.2480.145 0.4440.140 0.2390.109 0.6860.146 0.4410.023
GPOR 0.5940.131 0.6240.062 0.5110.175 0.3310.038 0.0340.024 0.4890.190 0.6260.148 0.3560.162 0.8610.155 0.4250.017
KLDOR 0.3340.076 0.5870.107 0.5390.208 0.4240.032 0.0280.019 0.3220.125 0.3080.128 0.1720.104 0.4730.069 0.4430.019
POM 0.9530.687 0.9470.321 0.5330.241 2.0290.070 0.0280.022 0.5850.204 0.8130.248 0.8260.230 0.6260.126 0.4390.019
SVC 0.4460.095 0.6240.090 0.3110.222 0.3940.042 0.0330.025 0.3670.134 0.3770.160 0.3080.090 0.5780.083 0.4080.020
RED-SVM 0.3930.073 0.5980.088 0.3780.169 0.3800.027 0.0320.022 0.3590.142 0.3460.110 0.2510.086 0.5150.087 0.4190.021
SVOREX 0.4080.089 0.5730.121 0.4890.185 0.3920.031 0.0330.022 0.3700.125 0.3820.139 0.2820.128 0.4850.078 0.4080.023
SVORIM 0.4240.090 0.5910.102 0.5060.167 0.3950.035 0.0310.021 0.3330.120 0.3720.126 0.2390.109 0.4610.081 0.4060.022
SVR-PCDOC 0.3970.093 0.5680.126 0.3670.154 0.3920.038 0.0270.020 0.3480.104 0.3260.141 0.3050.084 0.4570.071 0.4000.023
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Table 5.11: Comparison of SVR-PCDOC to other ordinal classification methods and SVC (AMAE and τb). The mean and standard deviation (SD) of the
generalization results are reported for each dataset. The best statistical result is in bold face and the second best result in italics.

AMAE MeanSD

Method/
DataSet

automobile bondrate contact-
lenses

eucalyptus newthyroid pasture squash-
stored

squash-
unstored

tae winequality-
red

ASAOR(C4.5) 0.5110.104 1.2260.175 0.3150.124 0.4280.045 0.1150.056 0.2480.145 0.5020.192 0.2560.149 0.6890.151 1.0450.080
GPOR 0.7920.200 1.3600.122 0.6510.286 0.3620.040 0.0620.049 0.4890.190 0.7970.234 0.4430.226 0.8630.164 1.0650.065
KLDOR 0.3450.104 1.0370.270 0.5190.280 0.4260.038 0.0590.040 0.3220.125 0.3490.156 0.3090.180 0.4710.070 1.2580.069
POM 1.0260.800 1.1030.403 0.5350.275 1.9900.048 0.0500.040 0.5850.204 0.8150.251 0.7910.332 0.6270.128 1.0850.037
SVC 0.4860.125 1.2650.183 0.3070.277 0.4330.048 0.0600.051 0.3670.134 0.4460.189 0.4440.163 0.5760.083 1.1190.069
RED-SVM 0.4680.096 1.1840.225 0.3850.198 0.4140.030 0.0570.049 0.3590.142 0.3910.149 0.3480.159 0.5130.086 1.0680.069
SVOREX 0.5180.096 1.0720.217 0.5170.303 0.4110.034 0.0540.042 0.3700.125 0.4330.172 0.4260.157 0.4840.079 1.0950.067
SVORIM 0.5230.105 1.1140.233 0.5890.259 0.4200.043 0.0550.042 0.3330.120 0.4270.148 0.3670.140 0.4590.081 1.0930.072
SVR-PCDOC 0.4400.128 0.9690.224 0.4200.098 0.4000.043 0.0450.040 0.3480.104 0.3600.184 0.3960.158 0.4550.071 1.0400.096

τb MeanSD

Method/
DataSet

automobile bondrate contact-
lenses

eucalyptus newthyroid pasture squash-
stored

squash-
unstored

tae winequality-
red

ASAOR(C4.5) 0.7410.069 0.1430.159 0.6040.216 0.8020.025 0.8530.067 0.7780.132 0.4150.245 0.6920.145 0.2430.177 0.4960.036
GPOR 0.5570.118 0.0000.000 0.3480.304 0.8300.020 0.9380.045 0.4610.314 0.0750.211 0.4200.331 −0.0180.108 0.5230.026
KLDOR 0.7930.056 0.3560.257 0.4480.273 0.7860.017 0.9480.034 0.7180.133 0.6460.160 0.7640.161 0.4770.114 0.4600.028
POM 0.4950.283 0.2900.302 0.4580.309 0.0080.038 0.9490.040 0.4630.237 0.1690.304 0.1090.305 0.3170.129 0.4970.025
SVC 0.6950.077 0.1210.177 0.6010.300 0.7830.025 0.9390.045 0.6980.133 0.5410.240 0.5990.140 0.3750.110 0.5160.027
RED-SVM 0.7510.054 0.2540.247 0.5770.242 0.8000.017 0.9430.041 0.7070.129 0.6010.148 0.6620.108 0.4170.120 0.5250.030
SVOREX 0.7490.062 0.3690.216 0.4250.304 0.7940.019 0.9410.040 0.6910.115 0.5340.207 0.5920.212 0.4450.110 0.5310.028
SVORIM 0.7480.065 0.2990.230 0.3820.269 0.7920.020 0.9440.038 0.7100.114 0.5420.167 0.6560.187 0.4820.118 0.5330.030
SVR-PCDOC 0.7440.076 0.4550.218 0.6200.217 0.7950.024 0.9520.037 0.7120.102 0.6100.201 0.6020.133 0.4930.101 0.5420.033
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Table 5.12: Mean results of accuracy (AccG), MAE (MAEG), AMAE (AMAEG) and τb (τbG)
and mean ranking (RAccG , RMAEG , RAMAEG and RτbG) for the generalization sets.

Method/Metric AccG RAccG MAEG RMAEG AMAEG RAMAEG τbG RτbG

GPOR 0.666 5.40 0.392 5.25 0.534 4.90 0.577 5.20

ASAOR(C4.5) 0.600 6.50 0.485 7.00 0.688 7.00 0.413 7.50

KDLOR 0.680 4.20 0.363 4.00 0.509 3.80 0.640 3.60

POM 0.490 7.90 0.778 7.80 0.861 7.00 0.375 6.90

SVC 0.683 3.60 0.385 5.55 0.550 6.20 0.587 6.20

RED-SVM 0.676 4.15 0.367 4.00 0.519 4.10 0.624 4.00

SVOREX 0.667 5.05 0.382 4.75 0.538 4.90 0.607 5.00

SVORIM 0.672 4.40 0.376 4.05 0.538 4.80 0.609 4.20

SVR-PCDOC 0.678 3.80 0.359 2.60 0.487 2.30 0.653 2.40

On the basis of this rejection, the Nemenyi post-hoc test is used to compare all
classifiers to each other [244]. This test considers that the performance of any two
classifiers is deemed significantly different if their mean ranks differ by at least the
critical difference (CD), which depends on the number of datasets and methods. A 5%
significance confidence was considered (α = 0.05) to obtain this CD and the results
can be observed in Figure 5.12, which shows CD diagrams as proposed in [244].
Each method is represented as a point in a ranking scale, corresponding to its mean
ranking performance. CD segments are included to measure the separation needed
between methods in order to assess statistical differences. Red lines group algorithms
where statistically different mean ranking performance cannot be assessed. Table 5.12

should also be considered when interpreting this graph.
Figure 5.12a shows that SVC, i.e. the nominal classifier, has the best performance

in Acc, this is, when not considering the order of the label prediction errors, and
SVR-PCDOC has the second best one. RED-SVM, KDLOR and SVORIM have similar
performance here. In Figure 5.12b, the best mean ranking is for SVR-PCDOC, and
SVORIM, KDLOR and RED-SVM have similar performance. However, when consid-
ering AMAE, it can be seen at Figure 5.12c that SVR-PCDOC mean ranking distance
to the other methods increases, specifically for RED-SVM and SVORIM. Finally, Fig-
ure 5.12d shows the mean rank CD diagram for τb where SVR-PCDOC is still having
the best mean performance.

It has been noticed that the Nemenyi approach comparing all classifiers to each
other in a post-hoc test is not as sensitive as the approach comparing all classifiers
to a given classifier (a control method) [244]. The Bonferroni-Dunn test allows this
latter type of comparison and, in our case, it is done using the proposed method
as the control method for the four metrics. The results of the Bonferroni-Dunn test
for α = 0.05 can be seen in Table 5.13, where the corresponding critical values are
included. From the results of this test, it can be concluded than SVR-PCDOC does not
report a statistically significant difference with respect to the SVM ordinal regression
methods, KDLOR and ASAOR(C4.5), but it does when it is compared to POM for
all the metrics and compared to GPOR for the ordinal metrics. Moreover, there are
significant differences with respect to SVC, when considering AMAE and τb.
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(a) Nemenyi CD diagram comparing generalization Acc mean rankings
of the different methods.
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(b) Nemenyi CD diagram comparing the generalization MAE mean
rankings of the different methods.
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(c) Nemenyi CD diagram comparing the generalization AMAE mean
rankings of the different methods.
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(d) Nemenyi CD diagram comparing the generalization τb mean rank-
ings of the different methods.

Figure 5.12: Ranking test diagrams for the mean generalization Acc, MAE, AMAE and τb.

From the above experiments, we can conclude that the reference (baseline) nomi-
nal classifier, SVC, is improved with statistical differences when considering ordinal
classification measures. Regarding ASAOR(C4.5), SVOREX, SVORIM, KDLOR and
RED-SVM, whereas the general performance is slightly better, there are no statisti-
cally significant differences favouring any of the methods.

As a summary of the experiments, two important conclusions can be drawn about
the performance measures: When imbalanced datasets are considered, AccG is clearly
omitting important aspects of ordinal classification and so does MAEG. If the com-
parative performance is taken into account, KDLOR and SVR-PCDOC appear to be
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Table 5.13: Differences and Critical Difference (CD) value in rankings in the Bonferroni-Dunn
test, using SVR-PCDOC as the control method.

Method

Metric ASAOR(C4.5) GPOR KDLOR POM SVC RED-SVM SVOREX SVORIM

Acc 1.60 2.70 0.40 4.10• 0.20 0.35 1.25 0.60

MAE 2.65 4.40• 1.40 5.20• 2.95 1.40 2.15 1.45

AMAE 2.60 4.70• 1.50 4.70• 3.90• 1.80 2.60 2.50

τb 2.80 5.10• 1.20 4.50• 3.80• 1.60 2.60 1.80

Bonferroni-Dunn Test: CD(α=0.05)= 3.336

•: Statistical difference with α = 0.05

very good classifiers when the objective is to improve AMAEG and τG. The best mean
ranking performance is obtained by PCDOC.

5.4.7.5 Latent space representations of the ordinal classes

In the previous section we have shown that our simple and intuitive methodol-
ogy can compete on equal footing with established more complex and/or less direct
methods for ordinal classification. In this section we complement this performance
based comparison with a deeper analysis of the main ingredient of our and other
related approaches to ordinal classification - projection onto the one-dimesional (la-
tent) space naturally representing the ordinal nature of the class organization. In
particular, we study how nonlinear latent variable models, SVR-PCDOC, KDLOR,
SVOREX and SVORIM organize their one-dimensional latent space data projections.
For comparison purposes, the latent variable Z values of the training and generaliza-
tion data of the first fold of tae dataset are shown (Figure 5.13). Both histograms and
values are plotted so that the behaviour of the models can be analysed. In the case
of PCDOC, the PCD projection is also included to see whether the regressor model
is close to the PCDOC projection. The histograms represent relative frequency of the
projections. SVORIM histograms and latent variable values are not presented since
they are similar to the SVOREX ones in the selected dataset.

We first analyse the SVR-PCDOC method. From PCD projections in Figure 5.13a
we deduce that classes C1 and C2 contain patterns that are very close in the input
space – projection of some patterns from C2 lies near the threshold that divides
the Z values for the two classes. Analogous comment applies to classes C2 and
C3. The regressor seems to have learnt the imposed projection reasonably well since
the predicted latent values have a histogram similar to the training PCD projection
histogram. The generalization PCD projections (Figure 5.13c) have similar character-
istics as the training ones9. Note the concentration of values around ẑ = 0.5 on the
prediction of the generalization Z . This concentration of values is due to wrong pre-
diction of class C1 and C3 patterns that were both assigned to C2. This behaviour can
be better seen in Figures 5.13e and 5.13f, where the modelled latent value for each
pattern is shown together with its class label. Indeed, during training some C1 and

9 There are much less patterns in the hold-out set than in the training set, making direct comparison of
the two histograms problematic
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(a) SVR-PCDOC train PCD histogram.
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(b) SVR-PCDOC train Ẑ histogram.
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(c) SVR-PCDOC generalization PCD histogram.
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(d) SVR-PCDOC generalization Ẑ histogram.
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(e) SVR-PCDOC train Ẑ prediction.
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(f) SVR-PCDOC generalization Ẑ prediction.

Figure 5.13: PCD projection and SVR-PCDOC’s histograms and Ẑ prediction corresponding
to the latent variable of the tae dataset: train PCD, train predicted Ẑ by SVR-
PCDOC, generalization PCD and generalization predicted Ẑ by SVR-PCDOC.
Generalization results are Acc = 0.582, MAE = 0.457, AMAE = 0.455, τb =
0.493.

C2 patterns were mapped to positions near the thresholds. This is probably caused
by noise or overlapping class distribution in the input space.
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(a) KDLOR train Ẑ histogram.
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(b) KDLOR generalization Ẑ histogram.
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(c) KDLOR train Ẑ prediction.
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(d) KDLOR generalization Ẑ prediction.

Figure 5.14: Prediction of train and generalization Ẑ values corresponding to KDLOR at tae
dataset. Generalization results are Acc = 0.555, MAE = 0.473, AMAE = 0.471,
τb = 0.477.

Figure 5.14 presents latent variable values of KDLOR. The KDLOR method projects
the data onto the latent space by minimizing the intra-class distance while maximiz-
ing the inter-class distance of the projections. As a result, the latent representations of
the data are quite compact for each class (see training projection histogram in Figure
5.14a). While this philosophy often leads to superior classification results, the pro-
jections are not reflecting the structure of patterns within a single class, that is, the
ordinal nature of the data is not fully captured by the model. In addition, KDLOR
projections occur in the wrong bins more often than in the case of SVR-PCDOC (see
generalization projections Z in Figure 5.14d)).

Finally, Figure 5.15 presents latent representations of patterns by the SVOREX
model. As in the KDLOR case (except for a few patterns), the training latent rep-
resentations are highly compact within each class. Again, the relative structure of
patterns within their classes is lost in the projections.

In both models, KDLOR and SVOREX, there is a pressure in the model construction
phase to find one-dimensional projections of the data that result in compact classes,
while maximizing the inter-class separation. In the case of KDLOR this is explicitly
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(a) SVOREX train Ẑ histogram.

−7 −6 −5 −4 −3 −2 −1 0 1 2
0

0.2

0.4

re
la

tiv
e

fre
qu

en
cy

freq.
thres q

(b) SVOREX generalization Ẑ histogram.
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(c) SVOREX train Ẑ prediction.
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(d) SVOREX generalization Ẑ prediction.

Figure 5.15: Prediction of train and generalization Ẑ values corresponding to SVOREX at tae
dataset. Generalization results are Acc = 0.581, MAE = 0.485, AMAE = 0.484,
τb = 0.445

formulated in the objective function. On the other hand, the key idea behind SVM
based approaches is margin maximization. Data projections that maximize inter-
class margins implicitly make the projected classes compact. We hypothesise that the
pressure for compact within-class latent projections can lead to poorer generalization
performance, as illustrated in Figure 5.15d. In the case of overlapping classes the
drive for compact class projections can result in locally highly nonlinear projections
of the overlapping regions, over which we do not have a direct control (unlike in the
case of PCDOC, where the nonlinear projection is guided by the relative positions of
points with respect to the other classes). Having such highly expanding projections
can result in test points being projected to wrong classes in an arbitrary manner. Even
though we provide detailed analysis for one dataset and one fold only, the observed
tendencies were quite general across the data sets and hold-out folds.
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5.4.8 Conclusions

This chapter addresses ordinal classification by proposing a projection of the input
data into a one-dimensional variable, based on the relative position of each pattern
with respect to the patterns of the adjacent classes. Our approach is based on a simple
and intuitive idea: instead of implicitly inducing a one dimensional data projection
into a series of class intervals (as done in threshold based methods), construct such
projection explicitly and in a controlled manner. Threshold methods crucially depend
on such projections and we propose that it might be advantageous to have a direct
control over how the projection is done, rather than having to rely on its indirect
induction through a one-stage ordinal classification learning process.

Applying this one-dimensional projection on the training set yields data on which
generalized projection can be trained using any standard regression method. The
generalized projection can in turn be applied to new instances which are then classi-
fied based to the interval into which their projection falls.

We construct the projection by imposing that the “best separated” pattern of each
class (i.e. the pattern most distant from the adjacent classes) should be mapped to
the centre of the interval representing that class (or in the interval extremes for the ex-
treme, first and the last, classes). All the other patterns are proportionally positioned
in their corresponding class intervals around the centres mentioned above. We de-
signed a projection method having such desirable properties and empirically verified
its appropriateness on datasets with linear and nonlinear class ordering topologies.

We extensively evaluated our method on ten real-world datasets, four performance
metrics, a measure of statistical significance and performed comparison with eight
alternative methods, including the most recent proposals for ordinal regression and
a baseline nominal classifier. In spite of the intrinsic simplicity and straightforward
intuition behind our proposal, the results are competitive and consistent with re-
spect to the state-of-the-art in the literature. The mean ranking performance of our
method was particularly impressive, when robust ordinal performance metrics were
considered, such as the average mean absolute error or the τb correlation coefficient.
Moreover, we studied in detail the latent space organization of the projection based
methods considered in this chapter. We suggest, that while the pressure for compact
within class latent projections can make training sample projections nicely compact
within classes, it can lead to poorer generalization performance overall.

We also identify some interesting discussion points. Firstly, the latent space thresh-
olds are fixed by the projection with an equal width. This may be interpreted as
an assumption of equal widths for each class, which is not always true for all the
problems. This would indeed be a problem if we used a linear regressor from the
data space to the projection space. However, we employ nonlinear projections and
the adjustment for unequal ‘widths’ of the different classes can be naturally achieved
within such nonlinear mapping from the data to the projection space. Actually, from
the model fitting standpoint, having fixed-width class regions in the projection space
is desirable. Allowing for variable widths would increase the number of free param-
eters and would make the free parameters dependent in a potentially complicated
manner (flexibility of projections versus class widths in the projection space). This
may have harmful effect on model fitting, especially if the data set is of limited size.
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Having less free parameters is also advantageous from the point of view of computa-
tional complexity.

The second discussion point is the possible undesirable influence of outliers in the
PCD projection. One possible solution can be to place each pattern in the projection
considering more classes than just the adjacent ones. However, this idea should
be done carefully in order not to decrease the role of ordinal information in the
projection. A direct alternative can be to use k-NN like scheme in Eq. (5.7), where
instead of taking the minimum distance to a point, the average distance to the k
closest points of class q± 1 can be used. This will represent a generalization of the
current scheme that calculates distances with k = 1. Nevertheless, the inclusion of k
would imply the addition of a new free parameter to the training process.

In conclusion, the results indicate that our two-phase approach to ordinal classifica-
tion is a viable and simple-to-understand alternative to the state-of-art. The projection
constructed in the first phase is consistently extracting useful information for ordinal
classification. This last remark is part of the application of the PCDOC to a real world
problem in the following chapter.





Part III

A P P L I C AT I O N S

This part of the thesis groups two real world problems in which ordi-
nal regression has been applied. The first application is the problem of
sovereign debt rating, which our PCDOC classifier is applied to. The
second application corresponds to wind speed prediction, which is a fun-
damental issue for wind farms set up.





6
A P P L I C AT I O N O F O R D I N A L R E G R E S S I O N T O S O V E R E I G N
C R E D I T R AT I N G

Summary. This chapter presents an application of the Pairwise Class Dis-
tances for Ordinal Classification (PCDOC) technique proposed at Chapter
5.

Specifically, in this chapter, we apply this technique to sovereign credit
rating classification, which has had an increasing importance since the
beginning of the financial crisis. Credit rating agencies opacity has been
criticised by several authors, highlighting the suitability of designing more
objective alternative methods. Here we address the sovereign credit rating
classification problem within an ordinal classification perspective, includ-
ing the PCDOC and several ordinal and nominal classification methods.

In addition to the classification task, we use the projection of the regressor
model in PCDOC for ranking visualization, which might be suitable to
build a decision support system. In contrast to unsupervised visualization
and projection techniques, here we have a projection which is validated
by means of its suitability to correctly classify patterns.

In this chapter the PCDOC technique is applied to Standard & Poors,
Moody’s and Fitch sovereign credit rating data of U27 countries during
the period 2006-2010.

Submitted publication. Part of this chapter has been submitted to an in-
ternational journal of application of computational intelligence techniques
and is currently under review process:

J. Sánchez-Monedero, P. Campoy-Muñoz, P.A. Gutiérrez and C. Her-
vás-Martínez. A guided data projection technique for classification
of sovereign ratings: the case of European Union 27. Applied Soft
Computing (Under Review).

6.1 introduction

The sovereign credit rating (or simply sovereign rating) industry is relatively new
and has rapidly grown since Standard & Poors (S&P) published the first ranking of
sovereign issuers in January 1961, followed by Moody’s in 1974 and Fitch in 1994.
Rating the creditworthiness of sovereign issuers has drawn growing attention due
to the fact that the national governments are by far the largest borrowers in capital
markets, outnumbering 60% of debt issued [258]. Sovereign ratings are a condensed
assessment of each government’s ability and willingness to service its debts in full

147



148 application of ordinal regression to sovereign credit rating

and on time [259], distilling a multitude of credit risk information into a single letter
on a credit quality scale. The main advantage of the sovereign ratings is the providing
of a way of comparing investment and their credit quality to international private
investors due to “the lack of consistent standards on government accounting across
borders” [258]. Furthermore, in the framework of Basel Accords [260], they play a
public function in determining the capital requirements for banks, securities firms
and insurance companies according their assets and liabilities [260]. In this way, the
role of sovereign ratings in structured finances has been accentuated by both market
and regulatory practices.

The European debt crisis is a dramatic example of sovereign rating’s role in the to-
day financial market functioning and their economic consequences. The rating down-
grade was focused on the so-called PIGS countries, i.e., Portugal, Ireland, Greece
and Spain, but led significant spillovers across other European countries with solid
macroeconomic and fiscal fundamentals [261]. As a result, the Eurozone financial
markets have been under the pressure of the widening of sovereign bond and credit
default swap spread, threatening the very existence of the European Union [262].

In the face of these developments, many policymakers and commentators have
stated that Credit Rating Agencies (CRAs) precipitated the European crisis by the
timing and extent of the downgrades [258]. Their critics highlight some of the dis-
advantages of the credit risk assessment process carried out by CRAs, such as their
inherent conflict of interest within their business model or their adequacy of perfor-
mance and lack of transparency [260].

The “issuer-pays” model, which is the most common remuneration practice among
CRAs, lends to business more than two thirds of their total revenues [260]. CRAs
also publish unsolicited ratings [258], being considered less reliable and less accurate
because they are based on publicly available data. Therefore, CRAs face a moral
hazard problem, in which they have an incentive to overestimate the creditworthiness
of the issuers and a restrain to avoid the loss of their credibility with the investors.

Besides the above issue, several studies pointed out that CRAs provide different
rating for the same entity [263] and the markets react differently to rating changes
made by each agency [261]. These disagreements are more frequent for sovereign
ratings than for corporate ones [264], between one or two notches in the finer risk-
scale [263], and may be explained by the use of varying economic and non-economic
factors and different weights on these factors, as well as the different methodologies
[265]. Even though CRAs publish their rating methodologies, the precise models are
not officially disclosed because of their business practice. In addition, the qualitative
part of the rating approach makes it harder to identify the relationship between the
assessment criteria and the resulting sovereign ratings [259], aggravating the problem
of opacity in the rating process.

In order to complement or replace human or institutions decisions, many statis-
tical and machine learning techniques have been applied to financial and business
issues [43, 266–268]. In this sense, the sovereign rating problem is a multiclass clas-
sification problem in which the items require to be classified into naturally ordered
classes. However, even though the ordered nature of most of the financial classifi-
cation problems, most of the solutions apply nominal classification techniques. This
chapter deals with the problem of sovereign rating within an ordinal classification
framework, and more precisely with the proposed PCDOC.
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In addition to the classification task under the ordinal classification focus, we use
the projection of the regressor model in PCDOC for ranking visualization which
might be suitable to build decision support systems. The advantage of using this pro-
jection is that, in contrast to unsupervised visualization and projection techniques,
here we have a projection which is validated by means of its suitability to correctly
classify patterns. Figure 6.1 shows a graphical summary of the whole process de-
scribed in this chapter.
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Figure 6.1: Graphical illustration of the work flow of PCDOC methodology with application
to the sovereing ratings.

6.2 machine learning state-of-the-art for sovereign rating

This section briefly presents the related state-of-the-art works. An in-depth study
is out of the scope of the current thesis, but there are several review papers regarding
statistical and machine learning techniques applied to financial and business issues
[43, 266–268].

In the accounting and finance domain, bankruptcy prediction and credit scoring
are the two major research problems [43]. More related to the current work, sovereign
debt rating issue is growing in attention of the machine learning scientific community,
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although most of the methodologies have been focussing on corporate bonds rather
than on sovereign risk [269]. In the second case, to assess the ability of a sovereign to
honour its debt, some works applied statistical techniques such as Discriminant Anal-
ysis (DA) [270–272]. In spite of the easy to explain behaviour of the statistical models,
the problem with applying these methods to the bond-rating prediction problem is
that the multivariate normality assumptions for independent variables are frequently
violated in financial data sets [273], which makes these methods theoretically invalid
for finite samples [274]. This justify the use of alternative methods such as machine
learning ones. The literature recognized the unsuitability of these approaches to
deal with sovereign rating problem because they ignore the ordered nature of ratings
and ordered response models have been later introduced to overcome this limitation
[259, 275–278].

Machine learning methods have been applied to model sovereign ratings, e.g. Ar-
tificial Neural Networks (ANN), which do not rely on parametric assumptions of
normality of data, independence of the explanatory variables, stationary or sample-
path continuity. The better performance of ANN compared to previous statistical
methods have been highlighted by Cosset and Roy [279], Cooper [280], Yim and
Mitchell [281] and Benell [269], among others. Although this approach is not without
its problems, such as the risk of over-fitting, the difficulty entailed in defining the
physical structure of the network, and the tendency to fall into local optima [6]. Sup-
port Vector Machines [44, 58] have being widely used for financial problems in the
recent years [43], for instance the standard SVM classifier has been applied to finan-
cial time series forecasting [282] or to corporate credit rating prediction [283]. Later,
new SVM models have being evaluated for credit scoring, for example, weighted
SVM models such as the Least Squares SVM (LSSVM), where the hyper-parameters
selection and training are based on the Area Under receiver operating characteristics
Curve (AUC) maximization [284]. Yu et. al presents a modified LSSVM to consider
the prior knowledge that different classes may have different importance for model
building so that more weight should be given to important classes [285]. Finally,
soft computing techniques have been considered for financial problems. For instance,
bank performance prediction were tackled with fuzzy SVM models by Chaudhuri
and De [286] or with ensemble systems by Ravi et. al [287]. In addition, hybrid ma-
chine learning approaches have been applied to credit scoring [288] and bank rating
[289].

However, most of the machine learning works deals with the problem as a bi-
nary classification problem, because several classifiers, such as SVM, are naturally
designed for binary classification tasks. This would limit the applicability to evaluate
credit as “risk” or “non-risk”. More recent approaches not only use a multi-class fo-
cus, but a limited number of them also consider an ordinal perspective of the problem.
Van Gestel et al. [144] propose a whole process model to develop rating systems. In
this work the classifier side is implemented by adding SVM terms to the linear model
of the ordinal logistic regression so that the final model is both accurate and readable.
Kim and Ahn [6] studied different ensembles of nominal multi-class support vector
machines (MSVM) and applied an ordinal pairwise partitioning to this MSVM to
build an ordinal MSVM.
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Table 6.1: A comparison of the rating labels from CRAs. The observations have been grouped
into broader categories in the second column.

Broader rating categories S&P Moody’s Fitch

Investment
grade

Highest quality C1 AAA Aaa AAA

High quality C2

AA+ Aa1 AA+

AA Aa2 AA

AA- Aa3 AA-

Strong payment capacity C3

A+ A1 A+

A A2 A

A- A3 A-

Adequate payment
capacity

C4

BBB+ Bbb1 BBB+

BBB Bbb2 BBB

BBB- Bbb3 BBB-

Speculative
grade

Likely to fulfill
obligations, ongoing
uncertainty

C5

BB+ Bb1 BB+

BB Bb2 BB

BB- Bb3 BB-

High credit risk C6

B+ B1 B+

B B2 B

B- B3 B-

Very high credit risk C7

CCC+ Caa1 CCC+

CCC Caa2 CCC

CCC- Caa3 CCC-

Near default with
possibility of recovery

C8
CC Ca CC

C C C

Default C9
SD - SD

D - D

6.3 experiments

This section presents the description of the sovereign rating dataset, the ordinal
classification performance metrics, the dataset experimental design and related meth-
ods experiments configuration, and the comparison of these methods to the proposed
one. The section concludes with the analysis of the predicted projection of the pat-
terns for the generalization set, i.e. the 2010 year.

6.3.1 Data description

A set of economic descriptors of countries have been collected. The dataset contains
108 annual observations of long-term foreign-currency sovereign credit ratings of 27
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Table 6.2: Description of the input variables. Note the business cycle approach has been
considered through the inclusion of Gross Domestic Product (GDP) growth, fiscal
and current account balance, inflation and unemployment as a three years average.

Variable name Unit of measurement Rating Influence

Real GDP growth Rate Positive

GDP per capita Euros per inhabitant Positive

Government debt Percent of GDP Negative

Fiscal balance Percent of GDP Positive

External debt Percent of exports Negative

Foreign reserves Percent of imports Positive

Current account balance Percent of GDP Negative

Inflation Index (2005=100) Negative

Unemployment Rate Negative

Unit labour cost Index (2005=100) Negative

Government effectiveness Percentile Positive

EU sovereign borrowers during the period from 2007 to 2010. The credit rating data
is from the publicly available historical information provided by the three leader
agencies, Standard and Poor’s, Moody’s and Fitch, as of December 31

st of each year.
The three CRAs use similar rating scales with 23-risk points (Table 6.1), in which the
triple-A notation means the best quality issue. The observations have been grouped
into broader categories according to Hill et al. [263], which are shown in the second
column.

By using the broader rating categories of Table 6.1 the problem would be a 9 ordi-
nal label classification problem. However, during the time span considered, all the
European issuers were rated into the five first categories. Consequently, only five
classes are considered for the classification problem (C1, C2, C3, C4, C5).

Many empirical studies, such as those from Cantor and Packer [264] and Bissoyon-
dal-Beheninck [259], among others, have investigated the determinants of sovereign
ratings, showing that they are mainly driven by economic variables. Based on them,
eleven variables have been selected (see Table 6.2), ten economic indicators as well
as one non-economic [290]. The data were taken from Eurostat, except Government
Effectiveness indicator provided by the World Bank as well as the External Debt fig-
ures, which were completed with information provided by Central Banks of Cyprus,
Malta, Sweden and Romania.

Notice that the methodology proposed attempts to estimate the rating provided by
CRAs based on a reduced set of publicly available indicators in comparison with the
large number criteria taken into account by CRAs. All the information about those
criteria is accessible online into the CRA web pages, being comparable across the
rating process, but they differ in the way in which they are classified and weighted
by the firms’ analysts [291, chap. III].

Three datasets are generated, one for each of the CRAs considered (Fitch, Moody’s
and S&P). The input variables are the same for all of them, but the rating is different
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(a) Patterns of Fitch’s dataset considering PC_GDP and
GV_EFFECT variables.

−2 −1 0 1 2 3 4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

G
V

_
E

F
F

E
C

T

PC_GDP

0.086

0.095

0.079
0.0000.273

0.244

0.299

0.300

0.365

0.446

0.500

0.689

0.659

0.700

0.965

class 1

class 2

class 3

class 4

class 5

(b) Example of the generated zi values on the Fitch’s dataset.

Figure 6.2: Illustration of the PCD projections with PC_GDP and GV_EFFECT variables of
Fitch’s dataset corresponding to patterns of years 2006-2009. Points of different
classes are plotted with different symbols and colours.

depending on the CRA taken into account. The dataset for each CRA has been split
in two subsequent time period sets used as training and generalization sets. The first
set includes 81 observations, described by the correspondent variables, from the 27

EU sovereign borrowers during the period 2007-2009, whereas, in the second one,
data are from 2010.

6.3.2 Analysis of the PCD projection with sovereign rating datasets

Before continuing, we present this section as a preliminary analysis of the data, so
that we can directly observe the exploitation of the order information done by PCD
(see Section 5.4 in Chapter 5). For this purpose two different input variables have
been selected from the sovereign rating datasets of Section 6.3.1. Our objective is to
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show how the proposed projection works in a two dimensional representation. The
variables selected are “GDP per capita” (PC_GDP) and “Government effectiveness”
(GV_EFFECT), for years 2006-2009, their values being standardised. This selection is
done because these variables are suitable for showing the ordinal structure of the data
in the input space, not because of feature selection criteria, which is out of the scope
of this chapter. Fitch countries patterns labelling is used for this illustration example,
as can be seen in Figure 6.2a. The figure shows that the data have a clear ordinal
distribution through the input space, and how a separation in classes is difficult,
some of them being clearly overlapped. It can be noticed the majority of patterns
of each class are situated in regions of the space having adjacent classes patterns in
neighbour regions.

Figure 6.2b presents the PCD concepts applied to the patterns in Figure 6.2a. The
minimum distances are illustrated with lines of the same colour than the class. The
minimum distance of a point to the next class patterns are marked with solid lines,
while the minimum distances to the previous class are marked with dashed lines. For
some example points (surrounded by a grey circle), the value of the PCD projection
using Eq. (5.11) is shown near the point. It can be easily seen that the z value increases
for patterns of the higher classes, and this value varies depending of the position of
the pattern x(q) in the space with respect to the patterns x(q−1) and x(q+1) of adjacent
classes.

6.3.3 Experimental design and comparison methods

The experiments have being carried out by using a hold-out experimental design of
the three datasets described at Section 6.3.1. The training dataset consist on patterns
belonging to years 2006-2009. The generalization or test dataset consist on the 2010

year patterns. It must be paid attention to the Moody’s dataset since during the
period 2006-2009 (training period) there were not ratings of class C5. However, in
2010 (test period), Greece was ranked as C5 by this CRA. Given that all classifiers
were trained for a four class dataset, none of them was able to correctly classify
Greece during the test phase.

Due to the deterministic nature of all the compared methods, only one run of each
method has been performed for each dataset and the generalization performance for
several classification metrics is reported.

The ordinal regression methods used for comparison purposes have been selected
according to their similarities to the proposal, and also because of the implementa-
tion availability. The ordinal methods considered are: A Simple Approach to Ordinal
Regression (ASAOR) with a C4.5 base classifier (as suggested by Frank and Hall [27],
ASAOR(C4.5)), Reduction from cost-sensitive ordinal ranking to weighted binary clas-
sification (RED) with SVM (RED-SVM) by Li and Lin [30], GPOR [41], SVOREX and
SVORIM [33]. The reader can consult Section 3.2 for more details. In our approach,
the Support Vector Regression (SVR) algorithm is used as the base regressor, so the
method is called SVR-PCDOC. The ε-SVR implementation available in the libSVM
package [170] is used. With respect to the ASAOR method, the C4.5 method avail-
able in Weka [66] is used as the underlying classification algorithm since this is the
one initially employed by the authors of ASAOR. In this way, the algorithm is identi-
fied as ASAOR(C4.5).
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In addition, some well known nominal algorithms have been selected in order to
compare the ordinal approaches and to check if the ordinal classifiers are taking
benefit from the order information. These are C4.5, a standard multinomial logistic
regression (Mlogistic), a logistic regression based on simple regression and variable
selection (Slogistic), and the MultiLayer Perceptron (MLP) neural network. A detailed
description of these methods can be found in the works of Landwehr et al. [292] and
Witten and Frank [118].

Model selection is an important issue and involves selecting the best hyper-pa-
rameter combination for all the methods compared. All the kernel methods were
configured to use the Gaussian kernel. For the support vector algorithms, i.e. RED-
SVM, SVOREX, SVORIM and ε-SVR, the corresponding hyper-parameters (regular-
ization parameter, C, and width of the Gaussian functions, γ), were adjusted us-
ing a grid search over each of the training set by a 5-fold cross-validation with the
following ranges: C ∈ {10−3, 10−2, . . . , 103} and γ ∈ {10−3, 10−2, . . . , 103}. Regard-
ing ε-SVR, the additional ε parameter has to be adjusted. The range consider was
ε ∈ {100, 101, 102, 103}. GPOR has no hyper-parameters to fix, since the method op-
timizes the associated parameters itself. Finally, ASAOR(C4.5), C4.5, Mlogistic and
Slogistic have no hyper-parameters. For the MLP method, the number of hidden
neurons was also adjusted by cross-validation in the training set.

6.3.4 Experimental results

Table 6.3 presents the performance results of the different algorithms with the
three datasets. Nominal and ordinal classifiers are separated with a horizontal line.
In general, it should be pointed out that the performance ranking changes for each
metric. However, SVR-PCDOC is very robust when considering all the datasets and
all the metrics. It achieves the best performance for all the metrics in the Fitch and
S&P datasets. In addition, the second best method for these datasets varies with
respect to the metric considered. For example, Slogistic is the second best one in S&P
when considering Acc. In this dataset, SVORIM was in the seventh position for Acc,
but for metrics which consider the order (MAE, AMAE and τb), this method is the
second best one. Regarding Moody’s dataset, SVR-PCDOC has the best results for
MAE and τb, but not for Acc and AMAE. This is due to the error that the classifier
has for Greece pattern in 2010, since it misclassifies Greece as C3 when it a C5 pattern,
and this is more more penalized by AMAE than by MAE.

Table 6.4 shows the credit rating granted by the three leader CRAs and the credit
rating predicted by the SVR-PCDOC models for the 27 EU countries in the test set
(year 2010). Errors have been highlighted in bold face. The data included in this table
should be analysed together with the contingency matrices in Figures 6.3, 6.4 and 6.5.

If we take into account the test set (corresponding to year 2010), the number of pat-
terns of each class are the following: {9, 5, 6, 5, 2} for Fitch, {9, 5, 6, 6, 1} for Moody’s
and {9, 3, 9, 3, 3} for S&P. Considering the three datasets, the total distribution is
{27, 13, 23, 14, 6}. Taking into account this distribution, a comparative analysis of per
class classification error is now presented. The number of patterns in class C1 is sig-
nificantly higher than in other classes, particularly with respect to the class C5. While
the number of patterns misclassified is three of 27 in class C1, it raised to three of
six in class C5. In the case of the intermediate classes, the misclassification errors are
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Table 6.3: Comparison of the proposed method to other nominal and ordinal classification
methods. The value of different metrics test results are reported for each dataset.
The best result is in bold face and the second best result in italics.

Accuracy MAE

Method/DataSet Fitch Moody’s S&P Fitch Moody’s S&P

C4.5 0.6296 0.6667 0.5926 0.4074 0.4074 0.4815

Mlogistic 0.4815 0.7778 0.3704 0.8889 0.3333 0.8889

MLP 0.6667 0.8519 0.6667 0.4074 0.2593 0.4444

Slogistic 0.7407 0.7778 0.7037 0.2593 0.2963 0.4074

ASAOR(C4.5) 0.5926 0.6296 0.7037 0.4815 0.4815 0.4074

RED-SVM 0.6667 0.8148 0.6667 0.3333 0.2222 0.4074

GPOR 0.7407 0.7037 0.6667 0.3704 0.4444 0.4444

SVOREX 0.7037 0.7778 0.5926 0.2963 0.2593 0.4444

SVORIM 0.6667 0.8148 0.6296 0.3333 0.2222 0.3704

SVR-PCDOC 0.7778 0.8148 0.7407 0.2222 0.2222 0.2593

AMAE τb

Method/DataSet Fitch Moody’s S&P Fitch Moody’s S&P

C4.5 0.4400 0.6800 0.5111 0.7621 0.7367 0.7655

Mlogistic 1.1600 0.6467 0.9333 0.5255 0.7719 0.5121

MLP 0.5267 0.4067 0.4000 0.7972 0.8097 0.7492

Slogistic 0.2667 0.6200 0.5111 0.8951 0.8151 0.8060

ASAOR(C4.5) 0.4533 0.7533 0.4222 0.6989 0.6655 0.7570

RED-SVM 0.2822 0.5356 0.4222 0.8835 0.8590 0.8052

GPOR 0.5133 0.9200 0.6222 0.7738 0.6869 0.7807

SVOREX 0.2422 0.5622 0.4444 0.8886 0.8610 0.7873

SVORIM 0.2756 0.5356 0.3556 0.8799 0.8525 0.8370

SVR-PCDOC 0.2089 0.5467 0.2889 0.9224 0.8610 0.8849

lower for class C4, only two errors, compared to classes C2 and C3, with four and six
errors, respectively.

The models could classify patterns in an upper or a lower class than that rated
by the CRA. In our analysis, we will use the terms “positive error” to mean that
model classifies the pattern in upper classes and “negative error” for lower classes
compared to the real ones (the higher the class the worse the rating is for the country).
The results show that the model for CRA Fitch committed 6 positive errors across the
fourth first classes, while the models for the other two CRA did both type of errors.
The errors committed by Moody’s model were less biased because it misclassified
positively two patterns and negatively other three, being located into the classes C2,
C3 and C5. Finally, the predicted label in the S&P model is very close to real rating.
This model committed 7 errors, 4 positive and 3 negative, across all the classes unless
C4. In all cases, the model misclassified patterns in adjacent classes to the real one.
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Table 6.4: Ratings for EU countries in the test set (2010): real ratings versus SVR-PCDOC
predicted rating.

Fitch Moody’s S&P

Pattern Acronym Rating Pred. Rating Pred. Rating Pred.

Austria AUT 1 1 1 1 1 1

Belgium BEL 2 2 2 2 2 2

Bulgaria BUL 4 5 4 4 4 4

Cyprus CHP 2 2 2 2 3 2

Czech Republic CZE 3 3 3 3 3 3

Germany DEU 1 1 1 1 1 1

Denmark DNK 1 1 1 1 1 1

Estonia EST 3 3 3 3 3 3

Finland FIN 1 1 1 1 1 1

France FRA 1 2 1 1 1 2

Great Britain GBR 1 1 1 1 1 2

Greece GRC 4 4 5 3 5 4

Hungary HUN 4 4 4 4 4 4

Ireland IRL 4 5 4 4 3 3

Italy ITA 2 2 2 2 3 3

Latvia LAT 5 5 4 4 5 4

Lithuania LIT 4 4 4 4 4 4

Luxembourg LUX 1 1 1 1 1 1

Malta MAL 3 3 3 3 3 3

Netherlands NLD 1 1 1 1 1 1

Poland POL 3 4 3 3 3 4

Portugal PRT 3 3 3 2 3 3

Romania ROM 5 5 4 4 5 5

Spain SPA 2 2 2 1 2 3

Slovakia SVK 3 4 3 4 3 3

Slovenia SVN 2 3 2 3 2 2

Sweden SWE 1 1 1 1 1 1

Errors have been highlighted in bold face.

We can distinguish several groups among the misclassified patterns. The first
group encompassed the countries that have recently joined to the European Union
(Bulgaria, Slovakia, Slovenia and Poland). For these countries, their EU membership
represents a qualitative feature that is positively valued throughout the credit risk
assessment [293]. The non-inclusion of this aspect in the set of the explanatory vari-
ables could partly explain the negative errors committed by the models with respect
to these countries.

The second group encloses two great European powers, France and Great Britain.
The economic downturn had led distortions in some of their economic fundamentals,
bringing them closer to those countries characterized as class C2. However, their
economic, political and financial structure generate favourable short and medium-
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term expectations concerning to their creditworthiness, which allow them to gain
the highest rating for their sovereign debt. The third group comprises the PIGS
countries, strongly punished by financial markets during the sovereign debt crisis
episode. Portugal, Spain and Greece are negatively misclassified by some models.
In this case, the differences between projected and real rating is due to the negative
expectations on their future economic performance, especially those aspect related to
the fiscal policy. As for Greece, the reliability of the data employed [294] may also
be the cause of its better performance. On the other hand, Fitch model committed a
positive error classifying Ireland. This error could be due to its higher fiscal deficit
compared to those patterns in classes C4 and C5.

Finally, the case to be analysed is that of Cyprus which is assigned by the three
models to class C2. Thus, the S&P model misclassified negatively this pattern. It also
seems to indicate that S&P model did not reflect the fact that S&P tends to downgrade
issuers when compared to the other two agencies [265]. Indeed, S&P downgraded
Cyprus from C2 to C3 at the end of 2010, while Moody’s and Fitch did it during the
first half of the following year.

6.3.5 Analysis of the predicted projection
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Figure 6.3: Predicted projection values and contingency matrix for the Fitch test set (year
2010) by using SVR-PCDOC.

This section analyses the values predicted by the regressor in the latent space (L)
for the three datasets, which are generated by the SVR-PCDOC model. Due the way
the PCD projection is built, and the quality of the regressor model –which is validated
through its classification performance–, it makes sense to use these predictions to
provide additional information to potential decision makers. We propose to use these
predicted values as a one dimensional measure of the overall patterns rank.

Figures 6.3, 6.4 and 6.5 show the predicted one dimensional projection of the SVR-
PCDOC model. This is, the value predicted by the SVR model trained with the PCD
projection. Patterns of different classes are highlighted with different colours and
symbols corresponding to the actual class. Thresholds for each class are plotted with
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Figure 6.4: Predicted projection values and contingency matrix for the Moody’s test set (year
2010) by using SVR-PCDOC.

dashed lines so that it can be seen whether the prediction matches the right class or
not (a pattern is classified into a class depending on how it is relatively positioned
with respect to the thresholds, see Eq. (3.1)). Observe that for Moody’s (Figure 6.4)
there are only three thresholds since the training set contained patterns for only four
classes.

For all the plots, the position of the patterns into the one dimensional variable
space should be taken into account, so that patterns close to the thresholds are more
likely to be misclassified, and it would be advisable to get an expert revision of the
final classification to complete a more robust decision support system. This is the
case of Great Britain and France rated with C1 for the Fitch and Moody’s datasets
(see Figures 6.3 and 6.4). However, the predictions of the models are very close to the
thresholds, and these predictions are quite consistent with the ones of the S&P model
that definitely places Great Britain and France in C2. On the other hand, there are
some countries that are placed in the minimum values of the first class (C1) interval
(e.g. Luxembourg, Sweden, Finland, Denmark or Austria). According to the input
variables, the trained model places this countries as “better positioned” on class one
than all the other patterns.

Together with the plots, it is included the corresponding confusion or contingency
matrix of the classification results. Observe that errors are aligned through the diag-
onal of the matrices (as mentioned during this dissertation, e.g. in Section 3.2, this is
one of the aims of the ordinal classification). The only exception is the case of Greece
in Moody’s dataset (see Figure 6.4), where this pattern of C5 is placed on class C3.
However, we can argue that this case is not common since the model was trained by
only considering four classes.
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Figure 6.5: Predicted projection values and contingency matrix for the S&P test set (year 2010)
by using SVR-PCDOC.

6.4 conclusions

In this chapter, we have applied the PCD projection as a suitable methodology for
data classification and validation. The robustness of the classifier is demonstrated
using four performance metrics for comparing the PCDOC classifier to nominal and
ordinal classifiers in the three main CRA’s datasets. In most cases, the errors commit-
ted by the three models implies the misclassification of patterns in only one upper or
lower class rather than several ranks in the ordinal rating scale. It supposes an advan-
tage for decision making process based on scenarios considering sovereign ratings.

On the other hand, the pattern by pattern analysis indicates that the set of ex-
planatory variables has to be augmented with other qualitative variables for some
countries. In this regard, the historical information about a country’s economic per-
formance could be completed with data on economic short and medium-term expec-
tations, as a result projected rating would turn into forward-looking evaluation of the
country’s ability to honour its sovereign debt.

This study can be extended in two different ways to increase the accuracy of the
proposed models, once data comparable across countries and for periods of less than
one year are available. First, by using quarterly or monthly data that provide more
detailed information on the economic and financial developments in the context of
the high volatility and the repricing of risk in financial markets. Secondly, by includ-
ing data about country banking sector’s exposures to sovereign debt and housing
bubble that finally crystallize on the government’s balance sheet.
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A P P L I C AT I O N O F O R D I N A L R E G R E S S I O N T O W I N D S P E E D
F O R E C A S T I N G

Summary. This chapter addresses the problem of wind speed forecasting
under the umbrella of ordinal regression.

In general, previous works consider the wind speed as a continuous target
variable, estimating then the corresponding wind series of continuous val-
ues. However, the exact wind speed is not always needed by wind farm
managers, and a general idea of the level of speed is, in the majority of
cases, enough to set functional operations for the farm (such as wind tur-
bines stop, for example). Moreover, the accuracy of the models obtained
is usually improved for the classification task, given that the problem is
simplified.

Therefore, this chapter tackles the problem of wind speed prediction by
considering wind speed as a discrete variable and, consequently, wind
speed prediction as a classification problem, with four wind level cat-
egories which a clear order arrangement: low, moderate, high or very
high.

Associated publications. Some portions of this chapter appeared in [5,
295]:

P.A. Gutiérrez, S. Salcedo-Sanz, C. Hervás-Martínez, L. Carro-Calvo,
J. Sánchez-Monedero and L. Prieto. Ordinal and nominal classifi-
cation of wind speed from synoptic pressure patterns. Engineering
Applications of Artificial Intelligence, 26(3):1008–1015, 2013.
Impact factor (JCR2012): 1.625

http://dx.doi.org/10.1016/j.engappai.2012.10.018

P.A. Gutiérrez, S. Salcedo-Sanz, C. Hervás-Martínez, L. Carro-Calvo,
J. Sánchez-Monedero, and L. Prieto. Evaluating nominal and or-
dinal classifiers for wind speed prediction from synoptic pressure
patterns. In Proceedings of the 11th International Conference on Intel-
ligent Systems Design and Applications (ISDA 2011), pages 1265–1270,
Cordoba, Spain, Spain, nov 2011.
http://dx.doi.org/10.1109/ISDA.2011.6121833

7.1 introduction

Among renewable energies, wind power is one of the most promising sources of
renewable energy in the world, and also the one with a stronger economic impact in
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developed countries [296]. As an example, wind power installed worldwide by the
end of 2009 reaches a total of 157 GW, of which about 76 GW correspond to Europe,
and 19 GW only to Spain. Thus, wind power represents over 12% of the total energy
consumed in countries such as USA, Germany or Spain, and it is expected that this
percentage grows up to an amazing 20% by 2025 [297]. This booming of wind energy
has brought together the construction of a huge number of wind farms in the last
few years, and, consequently, a good number of new problems associated with the
management of these facilities.

Wind speed reconstruction, long-term prediction and wind series analysis are
mainly the most important problems faced by wind farm managers in daily oper-
ations. These problems are related to different important decisions about the wind
farm, such as maintenance stops, production analysis and planning and even micro
sitting of new wind turbines. Existing approaches for these problems are mainly
based on historic registers of wind measures, from which statistical models are con-
structed in order to explain the wind behaviour. These models can be then applied
to future values of time in the case of long-term wind speed prediction, or to val-
ues in the past in order to reconstruct or analyse and reconstruct wind speed series.
Different techniques have been used to obtain these wind speed models, such as
statistical methods [298, 299], neural networks [300, 301], Support Vector Machines
[302], Bayesian models [303], etc. The majority of the existing techniques used to con-
struct long-term wind speed models are exclusively based on past wind speed data,
and some of them include other atmospheric variables as input data, such as local
temperature, radiation or pressure at the measuring point. The problem with this
approach based on wind measures is that, in some cases, these data are not available,
due to fails in the measurement systems, or just because the terrain is a prospective
site to install a wind farm, and there is not a meteorological tower installed yet. This
problem is even harder in the case of historic analysis or wind series reconstruction,
since it is not possible to obtain any direct wind measure if it is not available.

In these problematic cases, the possibility of obtaining indirect measures of wind is
currently a hot topic, in which many renewable energy companies are investing lots
of resources. In this sense, different recent works have used synoptic pressure1 as an
indirect measure to study different atmospheric phenomenons such as precipitation,
pollution or temperature [304–310]. In the case of the wind, it seems even more
evident that a good source of indirect wind measures is the pressure at synoptic
scale, since the wind at a given point is a direct function (when the effects of limit
boundary layer are removed) of the pressure gradient. Thus, different works have
related pressure patterns with local or mesoscale wind [311–315]. Among them, the
work by Hocaoglu et al. [314] has been selected in the experimental section as one of
the compared methods, given that it resembles the proposal in this chapter in some
ways.

Specifically, in this chapter, the problem of wind speed estimation in a given point
(wind farm), from the corresponding synoptic pressure pattern is tackled. The prob-
lem involves daily pressure patterns in a synoptic grid, in this case centred in Spain,
and a wind speed module measure. The main novelty of the chapter is that this

1 Synoptic scale in meteorology corresponds to atmospheric phenomenons in a horizontal length scale
of the order of 1000 kilometres or more. Regarding to synoptic pressure, the majority of high and
low-pressure areas that can be seen on weather maps are synoptic-scale systems.
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C1 C2 C3 C4

Figure 7.1: Wind speed classes (C1 ≺ C2 ≺ C3 ≺ C4) and its relationship with the power
curve of the wind turbines.

wind speed is discretized into different levels of wind (classes) in order to treat it
as a classification problem. The motivation behind this is that the manager of the
wind farm can get enough information from the considered classes in order to set
functional operations for the farm (such as wind turbines stop, for example). Note
that the exact wind speed value is not usually important for this task. Additionally,
higher accuracy can be obtained for a classification task, given that the problem is
simplified. Four classes have been considered that cover all the wind speed spectrum
of a wind farm operation.

7.2 problem definition

Formally we can define the wind forecasting problem as follows: Let y = {yi, i =
1, . . . , N} be a series of daily wind speed discretized measures at a given point, in
such a way that yi ∈ Y = {C1, C2, C3, C4}, i.e. y belongs to one out of 4 classes which
are subjected to an order (C1 ≺ C2 ≺ C3 ≺ C4, where ≺ is an ordering relationship
between the labels).

In this proposal, the different classes for the wind speed have been constructed
taking into account the characteristics of the wind turbines, i.e. its power curve. Fig-
ure 7.1 shows the 4 classes established in this chapter, which try to model the power
curve of the turbines installed in the considered wind farms. Thus, C1 contains
situations of low wind, where the wind turbine will not produce power, C2 summa-
rizes situations in the beginning of the wind power ramp, C3 comprises situations
in which the production of the wind turbine is significant and C4 models situations
of high wind speed and power production. Note daily averages of wind speed are
studied, so the classes are set to have enough number of samples from each class.
Let X = {xi, i = 1, . . . , N} be a series of daily synoptic-scale pressure measures in a
grid. In this case, each component of X is a matrix of 14× 13 surface pressure val-
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ues (182 values), measured in a grid surrounding the Iberian Peninsula (Figure 7.2).
The problem faced in this chapter is a classification problem, consisting of obtaining
a machine Φ by using a training set {(xi, yi), i = 1, . . . , Nn < N} (the first part of
the series), so that for a given value of xi, it estimates the associated value of yi, i.e.
Φ(xi) → yi, in such a way that the machine Φ minimizes an error measure in an
independent test set {(xi, yi), i = Nn + 1, . . . , N} (the rest of the series), to ensure the
good generalization of the machine.

Figure 7.2: Synoptic pressure grid considered (Sea Level Pressure values have been used in
this chapter).

7.3 experiments

In the following subsections, the description of the datasets and the experimental
design is given, together with the description of the methods based on HMMs, which
will be used also for comparison purposes. Then, the details on the preprocessing of
the datasets are explained, and finally the obtained results with the different consid-
ered classifiers are discussed.

7.3.1 Data description and preprocessing

Five different wind farms have been considered for this study, resulting in five
datasets (H, M, P, U and Z, see Figure 7.3). Each dataset includes a series of dis-
cretized wind speed values (targets), taken in a tower at 40m of height, and averaged
over 24 hours to obtain daily data values. On the other hand, a series of grids of
average daily pressure maps for the same period have been obtained from the Na-
tional Center for Environmental Prediction/National Center for Atmospheric Rearch
Reanalysis Project (NCEP/NCAR) [316, 317], which are public data profusely used
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Figure 7.3: Location of the wind farms considered in this work.

Table 7.1: Structure of training and test sets: total number of patterns (Size), number of pat-
tern in each class (C1, C2, C3, C4) (Distribution) and final number of Principal Com-
ponents (PCs)

Wind Training Test

farm Size Distribution Size Distribution PCs1

H 2196 (416,1478,272,30) 1098 (200,790,99,9) 13

M 2231 (220,1590,396,52) 1115 (173,779,147,16) 10

P 2185 (773,1076,295,41) 1092 (409,538,125,20) 11

U 2017 (527,1167,280,43) 1008 (361,547,85,15) 6

Z 1749 (901,637,184,27) 874 (516,279,68,11) 13

1 This value has been obtained using the algorithm in Figure 7.4.

in climatology and meteorology applications. As previously mentioned, an uniform
grid in latitude and longitude has been considered, shown in Figure 7.2, with 182

measurement points, and each element of this grid is one input variable.
For each wind farm, two different sets are obtained, one for training the models and

another one for assessing the performance of the algorithms. In this way, the structure
of the different datasets used in this study is given in Table 7.1. The structures
of these datasets are challenging, because the distribution of the different classes is
clearly imbalanced, with very few situations of high wind speed (class C4) and lot of
patterns belonging to a moderate wind speed class (class C2).

Since all the tested algorithms are deterministic, they will be run once, deriving a
model from the training set and evaluating its accuracy over the test set. Both training
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Deciding # of Principal Components::
Require: Training dataset (Tr), Test dataset (Te)
Ensure: Projected training dataset (Tr∗), Projected test dataset (Te∗)

1: Apply PCA to Tr, without considering Te
2: Max ← Number of PCs retaining a 99% of the total variance of the dataset
3: for i = 1→ Max do
4: Tri ← Tr projected over the i first PCs.
5: Apply a ten-fold cross-validation method, considering Tri data and the LDA

classifier.
6: ei ← cross-validated error of the classifier.
7: end for
8: n← argminiei
9: Tr∗ ← Tr projected over the n first PCs.

10: Te∗ ← Te projected over the n first PCs.
11: return Tr∗ and Te∗

Figure 7.4: Algorithm for deciding the number of principal components.

and test sets are parts of a wind series, so it is not advisable to do different random
partitions of them.

For the selection of the SVM’s hyper-parameters (regularization parameter, C, and
width of the Gaussian functions, γ), a grid search algorithm was applied with a ten-
fold cross-validation, using the following ranges: C ∈ {10−3, 10−2, . . . , 103} and γ ∈
{10−3, 10−2, . . . , 103}. This cross-validation has been applied only taking into account
the training data, and then repeating the process with the lowest error parameter
combination using the complete training set.

7.3.2 Preprocessing of the dataset

As previously stated, the vector of inputs is formed by 14× 13 surface pressure val-
ues (182) values in a grid around the Iberian Peninsula, which results in a very high
number of variables. When too many inputs are presented to the standard machine
learning algorithms, a very well known problem appears, the curse of dimensionality,
which can decrease the performance of these algorithms and significantly increase
the computational cost. This is not needed for the HMMs described in subsection
7.3.4, given that only one single pressure value is obtained from the grid to construct
the model.

In order to alleviate this problem, a simple approach has been applied, based on
the standard technique of Principal Component Analysis (PCA) [318]. PCA is the
predominant linear dimensionality reduction technique, and has been widely applied
to datasets in all scientific domains. Generally speaking, PCA maps data points from
a high dimensional space to a low dimensional space, while keeping all the relevant
linear structure intact.

PCA algorithm returns so many principal components (PCs, linear combinations of
the input variables) as the total number of inputs, but they are sorted in the following
way: the first PC has as high variance as possible (that is, accounts for as much of
the variability in the data as possible), and each succeeding component in turn has
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the highest variance possible under the constraint that it will be orthogonal to (i.e.
uncorrelated with) the preceding components. Note that it should be decided at
a later stage how many PCs are retained when reducing the dimensionality of the
problem.

With this aim, the algorithm included in Figure 7.4 has been applied. The idea is
very simple: the coefficients of the PCs are obtained using the training data and all
possible combinations from 1 to the number of PCs that retain a 99% of the variance
are tested. A 10-fold cross-validation is applied for each combination, estimating
the error with one of the simplest existing classifier (a Linear Discriminant Analysis,
LDA) in order to limit the computational time. Once the best number of PCs is
decided, training and test data are projected into them, and the reduced datasets are
returned.

7.3.3 Comparison methods

This section presents the methods selected for comparison purposes. These meth-
ods are divided into ordinal classifiers, nominal classifiers and hidden Markov mod-
els.

7.3.3.1 Ordinal classifiers

The ordinal regression methods used for comparison purposes are the following:

ASAOR with a C4.5 base classifier (as suggested by Frank and Hall [27].

RED-SVM by Li and Lin [30].

SVOREX and SVORIM [33].

GPOR [41].

The reader can consult Chapter 3 for more details about the ordinal methods.

7.3.3.2 Nominal classifiers

Very well-known standard nominal classifiers have been taken into account. Their
main characteristics are briefly described in the following subsections.

Apart from Support Vector Machines described in Chapter 2, other standard ma-
chine learning classifiers have been considered. This set of classifiers have shown to
report good performance in previous machine learning works [292], and they have
been selected because they cover some of the more common and accurate approaches
for nominal classification (classification trees, boosting ensemble construction, and
logistic regression) from those available in the well-known Weka machine learning
software [66]. They include:

The Logistic Model Tree (LMT) classifier [292].

The C4.5 classification tree inducer [319].
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The AdaBoost.M1 algorithm, using C4.5 as the base learner. AdaBoost, short for
Adaptive Boosting, is a machine learning meta-algorithm [320], an algorithm
for constructing a “strong” classifier as linear combination of simple “weak”
classifiers. The maximum number of iterations has been set to 10 and 100

iterations (Ada10 and Ada100), as done in previous studies [292].

Multi-logistic regression methods, including the MultiLogistic (MLogistic) and
SimpleLogistic (SLogistic) algorithms.

• MLogistic is an algorithm for building a multinomial logistic regression
model, which is one of the more popular approaches for classification.
The algorithm includes a ridge estimator to regularize the model and
guard against over-fitting [321]. The coefficient matrices are found by a
Quasi-Newton Method: the active-sets’ method with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update.

• SLogistic is an alternative algorithm to build a multinomial logistic regres-
sion model. The process involves using the LogitBoost algorithm [322] to
fit additive logistic regression models by maximum likelihood. These models
are a generalization of the (linear) logistic regression models. This ver-
sion of the algorithm is based on controlling the number of variables of
the model to avoid over-fitting [292]: an iterative process adds the input
variables one by one, and the number of iterations is decided using a cross-
validation process.

7.3.4 Comparison to Hidden Markov Models

Apart from the methods presented, the approach of Hocaoglu et al. [314] based
on Hidden Markov Models (HMMs) has been also selected. Although our work has
some similarities with the approach presented in this paper (given that wind speed
is also estimated from pressure data), some differences have to be outlined. First
of all, a complete synoptic grid, with 182 different values (14 × 13) is considered
in our approach (see Figure 7.2). However, the aforementioned paper considered
one single atmospheric pressure observation. Pressure and wind speeds values are
then quantized in different number of intervals in order to apply discrete HMMs
to estimate wind speed. Other important fact is that in [314] hourly wind speed
prediction is considered, whereas in the current approach we manage average daily
wind speed values. The lower variability of these daily values can make necessary to
use a lower number of states for modelling.

To adapt the approach in [314] to the proposal of this work, a HMM for each wind
farm was constructed, considering one single-point pressure value obtained from the
182 values of the grid. Specifically, the absolute value differences between the upper
left and the upper right points and between the bottom left and the bottom right ones
were averaged. The number of states of each HMM was fixed to 4 states, considering
the intervals for wind speed in Figure 7.1. The observable emissions were considered
to be the single-point pressure values, which were discretized in 150 values (in a
similar way to [314]). The transition probabilities are obtained and organized in a
matrix form in the same way than in [314], as well as the emission matrix.
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Table 7.2: Test accuracy (C(%)) results obtained by using the different methods evaluated.

Wind farm

Classifier H M P U Z C(%) RC

SVM 75.77 73.32 63.64 62.50 70.48 69.14 3.10

LMT 75.05 70.94 56.23 62.80 64.65 65.93 6.10

C45 67.67 70.04 50.37 57.54 55.72 60.27 10.60

Ada10(C45) 69.22 68.43 53.66 63.39 61.10 63.16 8.40

Ada100(C45) 74.23 72.20 60.07 62.50 66.36 67.07 5.80

MLogistic 74.50 71.66 52.75 57.44 62.24 63.72 8.00

SLogistic 75.05 71.21 54.03 57.34 62.36 64.00 7.60

ASAOR(C45) 70.86 70.76 56.41 57.34 56.75 62.42 9.30

RED-SVM 75.77 73.90 63.64 62.50 70.48 69.26 2.70

SVOREX 75.50 73.27 64.65 62.90 68.99 69.06 2.90

SVORIM 75.23 73.36 64.56 62.90 69.34 69.08 2.70

GPOR 71.95 69.87 49.27 54.27 59.04 60.88 10.80

HMM 71.13 69.42 42.49 51.39 56.29 58.14 12.00

The best result is in bold face and the second best result in italics

7.3.5 Results

The results for the two different evaluation measures considered (C and MAE, see
Section 3.2.4 for metrics definition) are included in Tables 7.2 and 7.3, respectively.
Based on the C and MAE values, the ranking of each method in each wind farm is
obtained (R = 1 for the best performing method and R = 12 for the worst one). The
mean accuracy and MAE (C and M) as well as the mean ranking (RC and RM) are also
included in Tables 7.2 and 7.3 (R = 1 for the best method and R = 13 for the worst
one). The first conclusion is that considerably good accuracies are obtained, what
reveals that considering the problem as a classification task can provide an accurate
information of the wind farm. Also, the MAE values are quite low, the algorithms
doing a quite good job when ranking the patterns (a MAE value of 0.2 means that
the classifier predictions are, in average, 0.2 categories lower or higher than the target
ones).

The approach based on HMMs [314] reports acceptable results but lower in general
than those reported by the rest of methods. One possible reason is that the rest of
the methods do not take into account the sequential character of wind speed and
pressure values, while HMM does. Consequently, it is more difficult for HMMs to
improve measures like C or MAE, than it is for the rest of more flexible methods.

From these tables, the Support Vector Machines methods seem to be the most com-
petitive ones from all the different alternatives considered. When analysing the mean
ranking and performance, the RED-SVM methodology obtains the better results for
both measures. The second best methods are SVOREX and SVORIM for C, and
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Table 7.3: Test Mean Absolute Error (MAE) results obtained by using the different methods
evaluated.

Wind farm

Classifier H M P U Z M RM

SVM 0.242 0.267 0.365 0.382 0.300 0.311 2.90

LMT 0.250 0.293 0.459 0.383 0.373 0.352 6.20

C45 0.335 0.310 0.540 0.434 0.487 0.421 10.90

Ada10(C45) 0.314 0.318 0.492 0.381 0.420 0.385 8.60

Ada100(C45) 0.260 0.281 0.419 0.389 0.354 0.341 6.00

MLogistic 0.258 0.288 0.514 0.433 0.405 0.379 7.80

SLogistic 0.250 0.293 0.495 0.434 0.400 0.374 7.70

ASAOR(C45) 0.293 0.299 0.465 0.438 0.463 0.392 9.40

RED-SVM 0.242 0.261 0.364 0.382 0.295 0.309 2.20

SVOREX 0.245 0.268 0.354 0.378 0.317 0.312 2.70

SVORIM 0.248 0.267 0.355 0.378 0.314 0.312 2.60

GPOR 0.289 0.316 0.526 0.472 0.513 0.423 11.00

HMM 0.301 0.322 0.646 0.525 0.535 0.466 12.60

The best result is in bold face and the second best result in italics

SVORIM for MAE. Note that high accuracy values can be masking a lower ranking
performance (i.e. a high MAE value), because the classifier can tend to assign rank
values far from the real ones.

To determine the statistical significance of the rank differences observed for each
method in the different datasets, a non-parametric Friedman test [251] has been car-
ried out with the C and MAE rankings of the different methods (since a previous
evaluation of the C and MAE values results in rejecting the normality and the equal-
ity of variances hypothesis). The test shows that the effect of the method used for
classification is statistically significant at a significance level of α = 5%, as the con-
fidence interval is C0 = (0, F0.05 = 1.96) and the F-distribution statistical values are
F∗ = 12.37 /∈ C0 for C and F∗ = 21.67 /∈ C0 for MAE. As a result, the test concludes
that all algorithms perform statistically differently in mean ranking.

The Bonferroni-Dunn test [244] is an approach to compare all classifiers to a given
classifier (a control method), which is more sensitive than comparing all classifiers to
each other. This test has been applied to both C and MAE rankings using RED-SVM
as the control method. The test concludes that the differences in C and MAE values
are significant:

At a significance level of α = 5%, when RED-SVM is compared to C4.5, GPOR
and HMM using the C measure (with C ranking differences of 8.30, 8.10, and
9.30, respectively) and to C4.5, ASA(C4.5), GPOR and HMM using the MAE
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measure (with MAE ranking differences of 8.90, 7.20, 8.80 and 10.40, respec-
tively).

Additionally, at a significance level of α = 10%, when RED-SVM is compared
to ASA(C4.5) using the C measure (with C ranking difference of 6.80), and to
Ada10(C4.5) using the MAE measure (with MAE ranking difference of 6.60).

It is important to outline that, although the rank differences are significant, the
values obtained for the different measures (specially for accuracy, C) are very low
(see Tables 7.2 and 7.3). Consequently, the study cannot clearly establish that the use
of the ordering information improves the results obtained by the nominal classifiers.
However, it should be mentioned that the number of ordinal methods which obtain
better results is higher than in the nominal case, and that the differences for the MAE
measure are generally higher.

7.4 conclusions

This chapter introduced a new approach for daily mean wind speed series estima-
tion, based on synoptic pressure measures. The problem has been stated as a classi-
fication task rather than the usual regression approach. Wind speed was discretized
in four different ranges, which gather the main information needed by the experts
when managing the wind farm. On the other hand, synoptic pressure measures in
a grid have been considered as the input variables. The results of this preliminary
study show that the best performing method is the SVM, with very high accuracy
and low MAE values. Ordering information (more precisely, the RED and ASAOR
algorithms) do not clearly outperform nominal methods (SVM and C4.5), given that
very similar accuracies are obtained (although the differences in ranking over six
datasets show to be significant).





Part IV

C O N C L U S I O N S

This final part of the thesis includes the main conclusions raised from all
previous chapters and outlines some future research lines.





8
S U M M A RY, C O N C L U S I O N S , A N D F U T U R E W O R K

Summary. In this thesis, we have dealt with machine learning issues
associated with the problem of ordinal classification. As stated in the
introduction, the goal was to perform a review of the related research, to
propose new learning methods for specific ordinal regression issues and
to work in real world problems. In our opinion, these global goals have
been achieved. To support this statement, this chapter finalizes the thesis
with a summary of our contributions, together with some conclusions. We
end the chapter with some future research directions.

Please note that more details about these conclusions are provided in cor-
responding chapters.

8.1 summary and conclusions

This thesis presents a research work in ordinal regression with respect to two issues
of this field: class imbalance topic, which is shared with other classification problems,
and class ordering exploitation to improve classifiers performance. In this section we
summarize the thesis contributions grouped by topics.

8.1.1 Literature review and methods taxonomy

The thesis contribution begins with Chapter 3, which performs an exhaustive sur-
vey of the ordinal regression methods proposed in the literature. Up to the authors
knowledge, there are not similar reviews in this field. That chapter first presents the
problem setting, being clearly differentiated from other related topics. After this, a
taxonomy of ordinal regression methods is proposed, dividing them into four main
groups: naïve approaches, binary decompositions, threshold models and augmented
binary classification.

We think the proposed taxonomy can assist future researchers to develop and pro-
pose new methods by helping them to categorize their contributions and to analize
similar methods.

8.1.2 Class imbalance

Chapter 4 is devoted to the first major research topic in this thesis, which is the
class imbalance. As introduced, in the recent years, and specially in the nominal clas-
sification area, this topic has motivated active research to produce classifiers which

175
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are sensitive to all the classes, as well as to develop performance evaluation metrics
that consider per-class classification throughput.

However, the issue of class imbalance has been mainly considered for the binary
class case, due to a set of handicaps such as the difficulty of applying robust tech-
niques, such as the ROC analysis to multi-class scenarios. Recently, the multi-class
class imbalance issue has been tackled as a multi-objective optimization problem for
the multi-class case. Nevertheless, the computational cost of this approach motivated
further research to obtain less costly methods.

In Chapter 4 several alternatives are proposed to deal with multi-class imbalance
in an efficient way, concluding that the one based on the RMSE together with a prob-
abilistic output was the most suitable (considering classification performance for all
the classes and computational cost). Three keys were related to the success of the pro-
posal. Firstly, the previous Pareto based approaches are reformulated as a weighed
convex linear optimization problem. Secondly, the error functions are designed to
produce continuous responses. Two continous alternatives were selected, one based
on the cross-entropy error and the other based on the RMSE. The later being robust
enough and computationally easier to calculate, it was selected for guiding an evolu-
tionary algorithm. The first and the second key factors drastically reduced the cost
of candidate solutions evaluation while helped to select more robust classifiers. The
third fact for this efficient design is the use of the Evolutionary Extreme Learning
Machine (E-ELM), which is an efficient algorithm for training feed-forward neural
networks.

8.1.3 Ordinal regression models and learning

The second major research issue in this thesis is the exploration of new models and
learning algorithms for ordinal regression. This is done in Chapter 5.

The first proposal is the Evolutionary Extreme Learning Machine for Ordinal Re-
gression (E-ELMOR), which inherits lessons learned in Chapter 4 regarding model
evaluation. In this way, the Weighed RMSE (WRMSE) is proposed to conduct candi-
date solutions selection in the evolutionary algorithm. The WRMSE simultaneously
reflects three criteria that are desirable for an ordinal classifier which also cares about
the class imbalance issue: a) misclassification of non-adjacent classes should be more
penalized as the difference between class labels grows; b) the posterior probability
should be unimodal and monotonically decrease for non-adjacent classes; c) in other
error metrics such as MZE, only one network output (the one with maximum value)
contributes to the error function, and it does not contribute with the output’s value,
whereas, in RMSE based metrics each model output (posterior probabilities) con-
tributes to the error function in such a way that the model’s decision thresholds and
posteriors will tend to be more discriminative. This is possible because of the use of
a single multi-class model, given that this idea cannot be directly translated to binary
decomposition schemes. The results reveal a remarkable performance improvement
with respect to the reference methods.

The rest of the proposals aims at transforming the classification problem into a
standard regression problem as a way of modelling the unknown latent variable
which reflects the order arrangement between patterns of different classes.
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In this line, the second proposal is the Numerical Variable Reconstruction (NVR).
This alternative sticks to the strict definition of OR in which the order restriction is
only applied to the labels, i.e. the output space. The method properly sets up several
probability distributions to sample continuous values that are used to represent each
pattern in the latent space. Depending of the class, the values are sampled from a
different probability distribution, so that latent values for patterns of the same class
rely on the same interval. Then, a regressor model is trained to predict this generated
variable. Though NVR performs rightly for some datasets, it is not robust when
extending the experiments to more data sets or when considering more performance
metrics.

We considered that the idea of producing a continuous variable and training a
regressor to predict that variable could still be valid, but this variable should be
generated in a smarter way. Although the strict definition of OR does not consider
input data order, the OR threshold models implicitly assume that the latent variable
reflects somehow the total order of the patterns. Then it raised the idea of explicitly
exploiting this order to construct this variable.

In order to do this, we want to capture the order of the dataset in the one-dimensional
projection of the latent space, so relative positions of patterns in the input space
should be translated into relative positions in the latent space. A first idea could be
to use, for instance, the centroid of the class, so that the patterns can be placed in the
latent space according to their distance to the centroid of the class. However, simply
observing the two datasets represented in Figure 8.1, one may realize that this is not
a robust idea, because in these datasets the centroid of all the classes is very similar.
Therefore it raised the idea of using pairwise distances between neighbour classes
for projecting the patterns into the one-dimensional space. In this way, we meet the
order definition of OR in which the order is guaranteed between neighbour classes.
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(b) Representation of spiral dataset.

Figure 8.1: Representations of the toy dataset (by Herbrich et al. [8]) and the spiral dataset
proposed in Chapter 5.

The idea expressed in the previous paragraph results in the proposed Pairwise
Class Distance (PCD) projection, and then the associated classifier Pairwise Class
Distances for Ordinal Classification (PCDOC). Experimentally, we concluded that the
PCDOC method achieved suitable performance when compared to several state-of-
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the-art methods. Additionally, we studied in detail the latent space organization of
the projection based methods considered in that chapter. We suggest, that while the
pressure for compactness within class latent projections can make training sample
projections of the same class lie very close, for some datasets it can lead to poorer
generalization overall performance. This issue is relaxed for the PCDOC algorithm
which tends to produce softer projection models.

In conclusion, the results indicate that our two-phase approach to ordinal classi-
fication is a viable and simple-to-understand alternative to the state-of-art methods.
In the case of PCDOC, the projection constructed in the first phase is consistently
extracting useful information for ordinal classification. An example of the use of this
information is done in the application of this technique to the sovereign credit rating
problem in Chapter 6.

8.1.4 Improvement of real applications under the umbrella of ordinal regression

Finally, two real world application problems are presented.
The first application is presented in Chapter 6, and it is the rating of sovereign

credit by using PCDOC, that is experimentally compared to other ordinal and nomi-
nal classifiers. The robustness of PCDOC, as well as that of other methods, is remark-
able for several performance metrics.

In addition to the classification task, we use the projection of the regressor model
in PCDOC for ranking visualization, which might be suitable to build a decision
support system. In contrast to unsupervised visualization and projection techniques,
this projection is validated by means of its suitability to correctly classify patterns.

The second application is the wind forecasting issue (Chapter 7). We propose to
map the wind speed values to a set of ordinal labels in which each label is related
to the power that can be generated associated to levels of wind speed. Extensive
experiments are done comparing nominal and ordinal methods ability to predict the
label which represents the level of wind.

The most important conclusion of these last two chapters is that addressing these
two problems with ordinal regression techniques improved the generalization perfor-
mance. This definitely justifies the current thesis and motivates further research in
ordinal regression.

8.2 future work

There are several research lines that can extend the work presented in this thesis.

8.2.1 Possible improvements for the proposed methods

Regarding the methods proposed for ordinal regression, several issues can be fur-
ther explored:

In the case of E-ELMOR, future work could involve the design and experiments
with new output codes and the associated error functions. For instance, new
output codes for ANNs can be explored in order to consider the distance be-
tween class labels.
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Regarding the PCD projection, at the end of Chapter 5, there was a discussion
point about the possible undesirable influence of outliers in the PCD projection.
As suggested in the same chapter, a direct alternative could be to use k-NN like
scheme for calculating the minimum distance of a pattern to patterns of the
neighbour classes. In doing so, instead of taking the minimum distance to a
point, the average distance to the k closest points of classes q± 1 could be used.
This will represent a generalization of the current scheme that in the current
form calculates distances with k = 1. Nevertheless, the inclusion of k would
imply the addition of a new free parameter to the training process.

8.2.2 The issue of data ordering evaluation

Even though a problem nature suggests that there exist an order relationship be-
tween classes, several experiments in this thesis revealed that some of the nominal
classifiers obtained better performance results in some (apparently) ordinal datasets
than the ordinal classifiers.

As a base point for future research, in this section we perform some preliminary
experiments in order to artificially disturb the class ordering. The purpose is to
check whether the ordinal classifiers performance is affected if the order restriction
is changed. For these experiments we simply relabel the datasets in order to modify
the initial order arrangement of the classes. The relabelling consist on permutations
of class labels. For each data set experiments are carried out with the original labels
(Original), a random permutation of the labels (Shuffle), and an inverse ordering of
the labels (Inverse). Table 8.1 shows the three label combinations used in the experi-
ments depending on the number of classes of the problem and Table 8.2 presents the
different datasets selected for this experiment.

Table 8.1: Original labelling and relabelling options (‘random’ labels (Shuffle) and inverse la-
bels order (Inverse)). Note the second option is not a pure random execution since
the order is altered with the restriction of avoiding partial orders between classes,
and the ‘random’ label combination is the same for all the experiments to allow
proper comparisons.

Number of classes Original Shuffle Inverse

2 [1,2] [2,1] [2,1]

3 [1,2,3] [1,3,2] [3,2,1]

4 [1,2,3,4] [1,4,2,3] [4,3,2,1]

5 [1,2,3,4,5] [3,1,5,2,4] [5,4,3,2,1]

6 [1,2,3,4,5,6] [1,5,2,4,6,3] [6,5,4,3,2,1]

7 [1,2,3,4,5,6,7] [3,1,7,5,2,6,4] [7,6,5,4,3,2,1]

8 [1,2,3,4,5,6,7,8] [3,8,1,7,5,2,6,4] [8,7,6,5,4,3,2,1]

9 [1,2,3,4,5,6,7,8,9] [3,8,1,7,5,9,2,6,4] [9,8,7,6,5,4,3,2,1]

10 [1,2,3,4,5,6,7,8,9,10] [3,10,8,1,7,5,9,2,6,4] [10,9,8,7,6,5,4,3,2,1]
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Table 8.2: Characteristics of the benchmark datasets considered for the relabelling experiment

Dataset #Pat. #Attr. #Classes Class distribution

automobile (AU) 205 71 6 (3, 22, 67, 54, 32, 27)

balance-scale (BS) 625 4 3 (288, 49, 288)

ERA (ER) 1000 4 9 (92, 142, 181, 172,

158, 118, 88, 31, 18)

eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)

LEV (LE) 1000 4 5 (93, 280, 403, 197, 27)

newthyroid (NT) 215 5 3 (30, 150, 35)

pasture (PA) 36 25 3 (12, 12, 12)

squash-stored (SS) 52 51 3 (23, 21, 8)

squash-unstored (SU) 52 52 3 (24, 24, 4)

SWD (SW) 1000 10 4 (32, 352, 399, 217)

tae (TA) 151 54 3 (49, 50, 52)

toy (TO) 300 2 5 (35, 87, 79, 68, 31)

winequality-red (WR) 1599 11 6 (10, 53, 681, 638, 199, 18)

The experiments where carried out in a similar way as in the rest of the thesis, and
the mean generalization Acc performance is used for comparison purposes. Note
that ordinal regression metrics are not used here since we do not assume ordering
between classes anymore. Also Acc is the metric used as hyper-parameters selection
criteria.

Figure 8.2 shows the performance of several classifiers in the same datasets with
different labels ordering. This figure reveals that some of the ordinal regression
methods have a remarkable performance drop. Specifically, the thresholds methods
(PCDOC, SVORIM and KDLOR) are negatively affected by the random relabelling.
In the case of PCDOC and KDLOR, the performance is also degraded for the inverse
labelling, while SVORIM is not affected by this relabelling. ELMOR is also affected
for the targets relabelling, however, its performance decay is smaller. As expected,
the SVC is not affected by relabelling1. From this study, the questions to be answered
could be: a) why is the performance decay higher for some datasets?, and b) why
are some OR methods more robust to this relabelling process?. The answer to a) is
obviously related to the fact that ordinal structure can be found in the label space
but not in the input space. Consequently, designing a method to evaluate the degree
of ordinality of a dataset in the input space is a possible future research line. The

1 Note that though SVC is a deterministic method there are small variations in the performance. The rea-
son is that the hyper-parameters optimization used a grid search with an internal 5-fold cross-validation
procedure. This 5-fold performs different partitions of the training set, producing training and valida-
tion sets, and the partitions depends on a random seed. Specially for small datasets, the selection
of some patterns for the training or validation sets can influence the final hyper-parameters’ values
selection, and consequently can affect generalization performance.
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Figure 8.2: Preliminary experiments showing Acc performance for different methods with
original labels (Original), ‘random’ labels (Shuffle) and inverse labels order (In-
verse).

answer to b) should be found in the way each algorithm constructs and optimizes the
different classifiers.

In conclusion, and considering the preliminary experiments presented in this sec-
tion, the motivation of performing input space analysis in order to evaluate the or-
dinality degree of the problem relies here. Then, the future work road map should
definitely include methods for assessing the suitability of addressing the problem as
an ordinal regression task or as a nominal one, depending on previous evaluations
of the data set.
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a.1 statistical results tables for c , ms and t

Table A.1: Statistical results for C, MS and T

Dataset Algorithm C MS T

anneal EELMCS(R) 96.46 ± 01.75 80.43 ± 11.13 1.71E+002 ± 1.84E+000

EELMCS(E) 95.48 ± 01.93 76.76 ± 11.14 1.79E+002 ± 3.99E+000

EELMCS(CS) 98.07 ± 01.71 89.01 ± 11.49 1.62E+002 ± 2.59E+000

EELM(C) 99.11 ± 00.90 59.95 ± 47.29 1.67E+002 ± 7.36E+000

EELM(MS) 96.07 ± 02.65 83.61 ± 13.90 1.61E+002 ± 2.47E+000

OPELM 95.87 ± 01.21 51.67 ± 06.48 5.97E+000 ± 8.86E-001

ELM 96.74 ± 01.01 55.60 ± 12.83 2.26E-001 ± 9.96E-002

PDE(C) 90.24 ± 03.23 34.40 ± 27.22 3.02E+003 ± 3.92E+002

PDE(MS) 86.22 ± 06.42 53.76 ± 15.37 3.02E+003 ± 3.92E+002

HPDE(C) 92.22 ± 02.56 41.40 ± 27.91 3.01E+003 ± 4.77E+002

HPDE(MS) 87.08 ± 06.81 59.14 ± 14.01 3.01E+003 ± 4.77E+002

Rprop 95.82 ± 00.03 19.47 ± 00.37 2.24E+000 ± 8.14E-001

SVC 97.78 ± 00.00 50.00 ± 00.00 4.84E-002 ± 0.00E+000

balance EELMCS(R) 91.65 ± 00.94 87.67 ± 06.83 6.14E+001 ± 2.41E+000

EELMCS(E) 91.86 ± 00.79 87.42 ± 06.78 6.38E+001 ± 2.08E+000

EELMCS(CS) 90.92 ± 01.47 83.32 ± 10.85 6.07E+001 ± 1.29E+000

EELM(C) 91.32 ± 01.70 36.33 ± 26.46 6.10E+001 ± 1.67E+000

EELM(MS) 90.49 ± 02.00 81.86 ± 19.57 5.91E+001 ± 3.10E+000

OPELM 91.97 ± 01.61 16.33 ± 18.29 6.89E+000 ± 1.17E+000

ELM 88.55 ± 01.39 06.67 ± 06.06 3.54E-001 ± 1.07E-001

PDE(C) 90.36 ± 01.30 23.33 ± 16.68 1.03E+002 ± 1.03E+001

PDE(MS) 91.05 ± 01.15 85.15 ± 07.68 1.03E+002 ± 1.03E+001

HPDE(C) 91.24 ± 01.23 29.00 ± 11.85 1.20E+002 ± 1.34E+001

HPDE(MS) 91.22 ± 01.49 84.62 ± 06.82 1.20E+002 ± 1.34E+001

Rprop 92.56 ± 00.04 17.33 ± 00.27 8.41E-001 ± 2.89E-001

SVC 93.59 ± 00.00 80.00 ± 00.00 1.19E-002 ± 0.00E+000

breastw EELMCS(R) 96.30 ± 00.93 94.46 ± 02.07 1.77E+001 ± 3.43E-001

EELMCS(E) 96.02 ± 00.79 93.24 ± 02.11 1.88E+001 ± 4.19E-001

EELMCS(CS) 96.23 ± 00.86 93.54 ± 02.23 1.79E+001 ± 3.90E-001

EELM(C) 96.38 ± 00.77 94.42 ± 01.79 1.72E+001 ± 4.41E-001

EELM(MS) 95.70 ± 00.92 91.69 ± 02.52 1.73E+001 ± 3.60E-001

OPELM 95.92 ± 00.88 93.76 ± 01.98 1.40E+000 ± 2.97E-001

ELM 95.81 ± 00.66 92.06 ± 01.89 1.96E-002 ± 2.53E-002

Continued on Next Page. . .
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Dataset Algorithm C MS T

PDE(C) 95.14 ± 00.99 90.22 ± 02.69 2.47E+001 ± 3.56E+000

PDE(MS) 95.18 ± 00.93 90.33 ± 02.85 2.47E+001 ± 3.56E+000

HPDE(C) 95.03 ± 00.86 89.56 ± 02.19 2.92E+001 ± 3.77E+000

HPDE(MS) 94.93 ± 00.85 89.44 ± 02.16 2.92E+001 ± 3.77E+000

Rprop 96.13 ± 00.01 93.43 ± 00.02 4.78E-001 ± 1.46E-001

SVC 96.57 ± 00.00 91.67 ± 00.00 7.26E-003 ± 0.00E+000

card EELMCS(R) 88.07 ± 01.64 86.09 ± 01.59 4.95E+001 ± 3.95E-001

EELMCS(E) 88.13 ± 01.55 85.95 ± 03.12 5.22E+001 ± 3.43E-001

EELMCS(CS) 87.15 ± 01.94 85.59 ± 02.25 4.85E+001 ± 1.59E+000

EELM(C) 86.92 ± 01.50 84.82 ± 02.50 4.74E+001 ± 8.91E-001

EELM(MS) 87.23 ± 01.62 85.02 ± 02.28 4.86E+001 ± 1.39E+000

OPELM 84.84 ± 01.84 82.93 ± 02.72 6.21E+000 ± 7.78E-001

ELM 85.53 ± 01.93 84.33 ± 02.03 5.02E-002 ± 5.34E-002

PDE(C) 85.39 ± 02.32 83.01 ± 03.08 2.98E+001 ± 7.36E+000

PDE(MS) 85.74 ± 02.06 84.08 ± 02.44 2.98E+001 ± 7.36E+000

HPDE(C) 86.55 ± 01.14 84.85 ± 02.25 5.37E+001 ± 1.10E+001

HPDE(MS) 86.51 ± 01.32 85.30 ± 01.83 5.37E+001 ± 1.10E+001

Rprop 86.19 ± 00.08 82.85 ± 00.16 6.06E-001 ± 1.49E-001

SVC 88.44 ± 00.00 85.42 ± 00.00 3.31E-002 ± 0.00E+000

gene EELMCS(R) 84.73 ± 01.15 78.96 ± 02.14 9.79E+002 ± 8.23E+001

EELMCS(E) 84.67 ± 01.16 78.20 ± 03.59 9.99E+002 ± 8.63E+001

EELMCS(CS) 83.46 ± 01.30 78.84 ± 03.80 9.42E+002 ± 8.57E+001

EELM(C) 84.50 ± 01.45 78.52 ± 03.34 9.61E+002 ± 8.95E+001

EELM(MS) 83.69 ± 01.65 79.57 ± 02.60 9.61E+002 ± 9.05E+001

OPELM 77.99 ± 01.41 62.86 ± 04.43 8.56E+000 ± 1.06E-001

ELM 80.50 ± 01.33 69.65 ± 03.23 2.37E-001 ± 2.09E-002

PDE(C) 70.37 ± 04.18 56.74 ± 09.93 1.71E+004 ± 4.38E+003

PDE(MS) 69.99 ± 04.34 65.25 ± 05.83 1.71E+004 ± 4.38E+003

HPDE(C) 82.32 ± 02.83 75.15 ± 05.43 1.37E+007 ± 2.70E+006

HPDE(MS) 82.06 ± 02.76 74.89 ± 05.47 1.37E+007 ± 2.70E+006

Rprop 84.39 ± 00.07 73.52 ± 00.23 2.17E+000 ± 5.43E-001

SVC 90.92 ± 00.00 89.32 ± 00.00 1.33E+000 ± 0.00E+000

glass EELMCS(R) 62.83 ± 07.82 19.17 ± 16.54 7.31E+001 ± 9.53E-001

EELMCS(E) 69.62 ± 04.16 05.00 ± 12.11 7.52E+001 ± 1.05E+000

EELMCS(CS) 68.55 ± 04.41 18.61 ± 17.46 7.87E+001 ± 1.37E+000

EELM(C) 69.69 ± 05.22 07.78 ± 13.83 7.81E+001 ± 1.64E+000

EELM(MS) 66.42 ± 06.08 15.47 ± 17.16 7.74E+001 ± 1.76E+000

OPELM 71.70 ± 03.43 02.50 ± 07.63 2.88E+000 ± 4.94E-001

ELM 70.44 ± 04.86 00.00 ± 00.00 4.38E-003 ± 1.42E-002

PDE(C) 61.89 ± 08.53 01.67 ± 06.34 3.26E+002 ± 5.04E+001

PDE(MS) 57.99 ± 09.11 09.46 ± 15.06 3.26E+002 ± 5.04E+001

HPDE(C) 69.18 ± 05.23 02.50 ± 07.63 3.61E+002 ± 7.80E+001

HPDE(MS) 64.53 ± 07.41 18.43 ± 17.96 3.61E+002 ± 7.80E+001

Rprop 59.69 ± 00.11 00.00 ± 00.00 5.52E-001 ± 1.80E-001

SVC 64.15 ± 00.00 00.00 ± 00.00 8.35E-003 ± 0.00E+000

hepatitis EELMCS(R) 74.27 ± 04.23 42.92 ± 13.80 1.71E+000 ± 8.55E-002

EELMCS(E) 76.24 ± 04.26 38.75 ± 14.44 1.70E+000 ± 9.52E-003

Continued on Next Page. . .
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Dataset Algorithm C MS T

EELMCS(CS) 77.18 ± 04.43 45.90 ± 12.95 1.67E+000 ± 1.06E-002

EELM(C) 76.41 ± 04.64 35.00 ± 15.54 1.67E+000 ± 8.34E-003

EELM(MS) 74.87 ± 04.92 41.25 ± 13.99 1.67E+000 ± 9.07E-003

OPELM 76.32 ± 03.79 30.00 ± 14.53 2.27E-001 ± 6.25E-003

ELM 76.75 ± 03.92 32.50 ± 11.65 1.53E-003 ± 3.65E-005

PDE(C) 74.70 ± 04.24 33.33 ± 13.67 1.14E+001 ± 1.78E+000

PDE(MS) 74.70 ± 04.35 35.42 ± 12.32 1.14E+001 ± 1.78E+000

HPDE(C) 75.38 ± 03.34 31.67 ± 12.17 1.40E+001 ± 3.38E+000

HPDE(MS) 75.21 ± 04.11 33.33 ± 12.43 1.40E+001 ± 3.38E+000

Rprop 76.07 ± 00.04 22.08 ± 00.20 2.59E-001 ± 8.00E-002

SVC 79.49 ± 00.00 50.00 ± 00.00 1.58E-003 ± 0.00E+000

iris EELMCS(R) 96.00 ± 01.48 89.16 ± 03.29 1.76E+000 ± 2.17E-002

EELMCS(E) 95.70 ± 01.64 88.65 ± 03.08 1.82E+000 ± 1.78E-002

EELMCS(CS) 94.96 ± 01.93 87.56 ± 03.81 1.80E+000 ± 8.17E-003

EELM(C) 95.26 ± 02.16 89.09 ± 04.04 1.81E+000 ± 1.10E-002

EELM(MS) 94.74 ± 01.89 87.32 ± 03.63 1.80E+000 ± 1.07E-002

OPELM 92.89 ± 03.16 86.98 ± 07.09 8.08E-001 ± 2.09E-001

ELM 95.70 ± 02.18 90.54 ± 05.07 1.29E-002 ± 1.55E-002

PDE(C) 96.58 ± 01.82 90.26 ± 04.01 7.98E+000 ± 9.75E-001

PDE(MS) 95.81 ± 01.43 87.69 ± 04.33 7.98E+000 ± 9.75E-001

HPDE(C) 97.09 ± 00.89 91.28 ± 02.66 9.89E+000 ± 2.43E+000

HPDE(MS) 95.73 ± 01.23 87.18 ± 03.69 9.89E+000 ± 2.43E+000

Rprop 90.00 ± 00.13 71.76 ± 00.36 4.20E-001 ± 1.21E-001

SVC 97.78 ± 00.00 93.33 ± 00.00 6.18E-004 ± 0.00E+000

lymph EELMCS(R) 79.82 ± 03.74 04.83 ± 18.41 2.95E+001 ± 2.00E-001

EELMCS(E) 78.02 ± 05.35 02.33 ± 12.78 3.10E+001 ± 2.06E-001

EELMCS(CS) 77.75 ± 05.10 02.67 ± 14.61 3.11E+001 ± 3.93E-001

EELM(C) 79.01 ± 05.10 00.00 ± 00.00 3.13E+001 ± 3.64E-001

EELM(MS) 70.45 ± 06.46 06.28 ± 19.29 3.12E+001 ± 2.55E-001

OPELM 82.43 ± 04.36 00.00 ± 00.00 1.79E-001 ± 4.19E-003

ELM 79.28 ± 04.83 07.00 ± 21.36 4.85E-003 ± 1.22E-004

PDE(C) 79.46 ± 04.63 02.33 ± 12.78 9.75E+001 ± 2.67E+001

PDE(MS) 79.28 ± 04.78 02.33 ± 12.78 9.75E+001 ± 2.67E+001

HPDE(C) 80.99 ± 05.74 14.83 ± 30.44 1.21E+002 ± 2.57E+001

HPDE(MS) 80.81 ± 05.74 14.83 ± 30.44 1.21E+002 ± 2.57E+001

Rprop 80.99 ± 00.10 00.00 ± 00.00 3.21E-001 ± 1.29E-001

SVC 83.78 ± 00.00 00.00 ± 00.00 2.84E-003 ± 0.00E+000

zoo EELMCS(R) 91.73 ± 04.06 08.89 ± 18.69 3.61E+001 ± 3.84E-001

EELMCS(E) 92.93 ± 04.54 08.89 ± 27.59 3.76E+001 ± 2.98E-001

EELMCS(CS) 90.40 ± 04.15 00.00 ± 00.00 4.22E+001 ± 3.24E-001

EELM(C) 89.20 ± 03.95 02.22 ± 12.17 4.22E+001 ± 3.83E-001

EELM(MS) 88.93 ± 04.42 03.33 ± 18.26 4.23E+001 ± 4.78E-001

OPELM 87.20 ± 05.79 00.00 ± 00.00 4.60E-002 ± 7.87E-004

ELM 91.60 ± 04.74 05.00 ± 20.13 1.68E-003 ± 1.30E-004

PDE(C) 85.07 ± 06.12 02.78 ± 10.80 6.15E+001 ± 1.68E+001

PDE(MS) 84.67 ± 06.31 02.78 ± 10.80 6.15E+001 ± 1.68E+001

HPDE(C) 90.67 ± 05.49 08.89 ± 27.59 7.98E+001 ± 3.89E+001

Continued on Next Page. . .
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Dataset Algorithm C MS T

HPDE(MS) 90.80 ± 05.37 08.89 ± 27.59 7.98E+001 ± 3.89E+001

Rprop 86.93 ± 00.12 00.00 ± 00.00 4.98E-001 ± 2.04E-001

SVC 96.00 ± 00.00 00.00 ± 00.00 1.50E-003 ± 0.00E+000
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In this appendix we describe the developed synthetic data generator for creating
ordinal regression datasets. We focus on the general case dealing with challenging
data complexity topics that are interesting in general, and more specifically, in the
context of ordinal classification. Those topics are: class ordering in the input space,
data dimensionality, class overlapping and data multimodality.

The program is written in Matlab language and it allows the generation of datasets
with multidimensional isotropic Gaussian – also known as white Gaussian – distribu-
tions presenting the following parameters: number of classes, number of patterns per
class, number of input dimensions, variance of the Gaussians and number of modes
for each class. The framework allows data visualization which can be exported in
PDF and SVG formats (via Matlab toolboxes), and datasets files can be exported to
Weka and Matlab formats. The source code of the synthetic data generator is avail-
able on a public website1 and it is released under the GNU General Public License
version 3 (GPLv3) [257].

Associated publications. Some portions of this appendix appeared in the follow-
ing publication [246].

b.1 isotropic gaussian synthetic data generation

In order to simplify the requirements of the data generation, the patterns will
be generated by random sampling from isotropic Gaussian distributions (i.e. dis-
tribution variance is the same through all the dimensions). Being, N (µ, σ2) a one-
dimension Gaussian distribution, where µ is the mean and σ2 is the variance. For
higher dimensionality, the multivariate Gaussian distribution is defined as N (µ, Σ),
where µ is a n-dimensional mean vector, and Σn×n is the covariance matrix. In the
case of the multivariate isotropic Gaussian distribution, the distribution can be ex-
pressed as:

x = N (µ, σ2In×n), (B.1)

where sample x ∈ X ⊆ Rn and In×n is the identity matrix. Note this formulation
reflects that the variance σ2 is the same across all dimensions and that all the dimen-
sions’ variance are independent.

From now on, we will work with the multidimensional isotropic Gaussian distri-
butions (Eq. (B.1)). With these premises, a hyper-sphere or n-sphere with center in x
and radio r can be defined as follows:

1 http://www.uco.es/grupos/ayrna/iwann2013-syntheticdatagenerator

http://www.uco.es/grupos/ayrna/iwann2013-syntheticdatagenerator
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Figure B.1: Example of two synthetic datasets. The left dataset has n = 2, σ2 = 0.33 and
m = 1. The right dataset is generated with n = 3, σ2 = 0.33 and m = 2.

Sn =
{

x ∈ Rn+1 : ‖x‖ = r
}

, (B.2)

in our case, x = µ. Considering r = 3σ, nearly all (99.73%) of the population lies
inside the n-sphere.

Then, we want to place the set of n-spheres with a separation between them of α

in a Euclidean space, this is, the distance between one center µ and another center
µ′ = µ+ ∆µ will be α:

d(µ,µ′) =

√
n

∑
i=1

(µi − µ′i)2 =

√
n

∑
i=1

(µi − µi + ∆µ)2 = α, (B.3)

∆µ = ±α/
√

n. (B.4)

Then, using an increment of ∆µ guarantees a separation of α in the Euclidean
space independently of the dimensionality. With this separation between the centers
of the n-spheres the percentage of overlapped surface (n = 2) or volume (n ≥ 3)
respecting the n-sphere will be constant. Then, the overlap can be expressed in terms
of σ. Note that working with anisotropic Gaussian would imply defining multiple
hyper-ellipses, thus dealing with more complex calculations to effectively control
class overlapping in multiple dimensions.

Regarding multimodality of the data, we proceed in the following way: the pre-
viously defined Gaussian distribution is considered as the main distribution of each
class, and additional distributions are added to each class in order force multimodal-
ity. For each class q, the additional Gaussian distributions are centered in a random
location within the surface of the n-sphere with center µq and radius ∆r. In order to
sample points only on the n-sphere surface, the norm of the samples is used as the
n-space position (see Eq. (B.2)), then, the center of each additional mode is obtained
as:

µi
q = ∆r × ‖x‖ , x ∈ Cq, (B.5)
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where µi
q is the i-th mode of the q-th class, x is sampled from Eq. (B.1) and ∆r =

±λ/
√

n, being λ < α the desired separation between each mode of the class. In
this way, each class can be composed of different modes, however the overlap of the
additional distributions can not be controlled. We denote the number of modes per
class with m. Figure B.1 shows an example of two generated datasets and theoretical
n-spheres.
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