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Quick summary of ML

Traditional programming
Explicit rules:
if email contains Viagra
then mark is-spam;

if email contains ...;
if email contains ...;

Example from Jason’s Machine
Learning 101

Machine learning programs
Learn from examples:
try to classify some
emails;
change self to reduce
errors;
repeat;
...then use the model to label

Since nobody is explicitly
programming it, it is o ten assumed to
be fair, non-discriminative, avoid
human biases, etc.
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Machine learning tasks

• Prediction (classification/regression)
• Clustering, a.k.a. unsupervised machine learning
• Natural language processing
• Association rule learning
• Recommendation and search engines
• Ranking, sorting, etc.
• Some data visualization methods
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How machines learn to discriminate

Some sources of discrimination
(based on[Bar16]):
• Skewed sample

• Tainted examples
• Limited features
• Sample size disparity
• Proxy variables
• Different features behaviour
for each (sub)group

Source [JL16]
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How machines learn to discriminate

Some sources of discrimination
(based on[Bar16]):
• Skewed sample
• Tainted examples

• Limited features
• Sample size disparity
• Proxy variables
• Different features behaviour
for each (sub)group

Learn to predict hiring/loans/...
decisions
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How machines learn to discriminate

Some sources of discrimination
(based on[Bar16]):
• Skewed sample
• Tainted examples
• Limited features

• Sample size disparity
• Proxy variables
• Different features behaviour
for each (sub)group

Are the features (equally) reliably
collected for all the groups?
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How machines learn to discriminate

Some sources of discrimination
(based on[Bar16]):
• Skewed sample
• Tainted examples
• Limited features
• Sample size disparity

• Proxy variables
• Different features behaviour
for each (sub)group

Source How big data is unfair
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https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de


How machines learn to discriminate

Some sources of discrimination
(based on[Bar16]):
• Skewed sample
• Tainted examples
• Limited features
• Sample size disparity
• Proxy variables

• Different features behaviour
for each (sub)group

{Postal code, salary} correlates to
race
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How machines learn to discriminate

Some sources of discrimination
(based on[Bar16]):
• Skewed sample
• Tainted examples
• Limited features
• Sample size disparity
• Proxy variables
• Different features behaviour
for each (sub)group

SAT	Score

Number	of	Credit	Cards Populat on	1
Populat on	2

Source [Rot18]
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Bias reproduction and amplification

Source [LI16]

Feedback loops can reproduce and
amplify discrimination [BH17, EFN+17],
example PredPol:

• Crime prediction in an area will send
police resources to that area

• Discovered events will be added to
the database

• It is less likely to observe events that
contradicts predictions
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Bias amplification i

2

33% 66%

Female

Male

Dataset Gender Bias

imsitu.org

Source [ZWY+17]
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Bias amplification ii

3

16% 84%

Female

Male

Model Bias After Training

imsitu.org

Source [ZWY+17]
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Bias amplification iii

Algorithmic Bias in Grounded Setting

World Dataset

man fixing faucetwoman cooking

Model

dusting
cooking

faucet}
fork
}

Source [ZWY+17]
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How to measure discrimination?

How to evaluate fairness:
• Model/algorithm interpretability
(what we mean with model
interpretability? [Lip17])

• Dataset analysis
• Model performance w.r.t. subgroups
and subgroups discovery ([ZN16])

• Model behaviour analysis
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How to measure discrimination?

How to evaluate fairness:
• Model/algorithm interpretability
(what we mean with model
interpretability? [Lip17])

• Dataset analysis
• Model performance w.r.t. subgroups
and subgroups discovery ([ZN16])

• Model behaviour analysis

but... we need a criteria
(Aaron Roth: “Weakly
Meritocratic Fairness”)
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Discrimination is not a general concept

From the tutorial at NIPS [BH17], discrimination:

• It is domain specific and depends on potential impact on
(marginalized) communities.

• It is feature(s) specific, with “socially salient qualities that have
served as the basis for unjustified and systematically adverse
treatment in the past”.
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Formal setup in the community

Random variables in the same probability space ([BH17]):

• X features describing an individual
• A sensitive attribute (gender, race...)
• Y target variable
• C = f(X,A) predictor estimating Y

Likelihood w.r.t. X and protected attribute A:

P(Y|X,= x,A = a).

Many FATML/FAT*ML works deal with C independence of A so that, for
all groups in A (statistical parity):

P(C = c|X,= x,A = a) ≈ P(C = c|X,= x,A = b)

For more conditions and definitions on fairness see [BH17] and
[Rot18]. 11
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Some fixings on classifiers

Pre-processing. E.g. feature adjustment
Post-processing. E.g. threshold calibration
Training algorithm. E.g. regularization term

Many more...
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Threshold calibration

Source http://research.google.com/bigpicture/
attacking-discrimination-in-ml/
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Assumptions of methods

We should be aware of:

• Error function: What are we really optimising?
• Linearity assumption, e.g., Generalised Linear Models, K-means
• Independence of variables and variables interaction.
• ...
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K-means assumptions

Source Documentation of scikit-learn
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http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html


Further Questions

Everyone-is-right/wrong situations

Statistical learning will always tend to be conservative by definition

Is disparate treatment essential?

Fair facial recognition?

Non-binary group membership

...
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Questions?
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