Understanding data in relation to social justice

Seminar at UCL Information Security Research Group

Javier Sánchez-Monedero sanchez-monederoj at cardiff.ac.uk August 2, 2018

Cardiff University, UK

datajusticelab.org

Traditional programming

Explicit rules:

if email contains Viagra
 then mark is-spam;
if email contains ...;
if email contains ...;

Example from Jason's Machine Learning 101

```
Machine learning programs
Learn from examples:
try to classify some
emails;
change self to reduce
errors;
repeat;
...then use the model to label
```

Traditional programming

Explicit rules:

if email contains Viagra
 then mark is-spam;
if email contains ...;
if email contains ...;

Example from Jason's Machine Learning 101

```
Machine learning programs
Learn from examples:
try to classify some
emails;
change self to reduce
errors;
repeat;
then use the model to label
Since nobody is explicitly
```

programming it, it is often assumed to be fair, non-discriminative, avoid human biases, etc.

Machine learning tasks

- Prediction (classification/regression)
- Clustering, a.k.a. unsupervised machine learning
- Natural language processing
- Association rule learning
- Recommendation and search engines
- Ranking, sorting, etc.
- Some data visualization methods

How machines learn to discriminate

Some sources of discrimination (based on[Bar16]):

• Skewed sample

Source [JL16]

- Skewed sample
- Tainted examples

Learn to predict hiring/loans/... decisions

- Skewed sample
- Tainted examples
- Limited features

Are the features (equally) reliably collected for all the groups?

- Skewed sample
- Tainted examples
- Limited features
- Sample size disparity

Source How big data is unfair

- Skewed sample
- Tainted examples
- Limited features
- Sample size disparity
- Proxy variables

{Postal code, salary} correlates to race

- Skewed sample
- Tainted examples
- Limited features
- Sample size disparity
- Proxy variables
- Different features behaviour for each (sub)group

Source [Rot18]

Bias reproduction and amplification

Feedback loops can reproduce and amplify discrimination [BH17, EFN⁺17], example PredPol:

- Crime prediction in an area will send police resources to that area
- Discovered events will be added to the database
- It is less likely to observe events that contradicts predictions

Bias amplification i

Source [ZWY⁺17]

Bias amplification ii

Source [ZWY⁺17]

Bias amplification iii

Algorithmic Bias in Grounded Setting

Source [ZWY⁺17]

 Model/algorithm interpretability (what we mean with model interpretability? [Lip17])

Risk of Violent Recidivism Logistic Model Dependent variable:	
	Score (Low vs Medium and High)
Female	-0.729*** (0.127)
Age: Greater than 45	-1.742*** (0.184)
Age: Less than 25	3.146*** (0.115)
Black	0.659*** (0.108)
Asian	-0.985 (0.705)
Hispanic	-0.064 (0.191)
Native American	0.448 (1.035)
Other	-0.205 (0.225)
Number of Priors	0.138*** (0.012)
Misdemeanor	-0.164* (0.098)
Two Year Recidivism	0.934*** (0.115)
Constant	-2.243*** (0.113)
Observations	4,020
Akaike Inf. Crit.	3,022.779
Note: *p<0.1; **p<0.05; ***p<0.01	

- Model/algorithm interpretability (what we mean with model interpretability? [Lip17])
- Dataset analysis

- Model/algorithm interpretability (what we mean with model interpretability? [Lip17])
- Dataset analysis
- Model performance w.r.t. subgroups and subgroups discovery ([ZN16])

- Model/algorithm interpretability (what we mean with model interpretability? [Lip17])
- Dataset analysis
- Model performance w.r.t. subgroups and subgroups discovery ([ZN16])
- Model behaviour analysis

- Model/algorithm interpretability (what we mean with model interpretability? [Lip17])
- Dataset analysis
- Model performance w.r.t. subgroups and subgroups discovery ([ZN16])
- Model behaviour analysis

but... we need a criteria (Aaron Roth: "Weakly Meritocratic Fairness") From the tutorial at NIPS [BH17], discrimination:

- It is domain specific and depends on potential impact on (marginalized) communities.
- It is feature(s) specific, with "socially salient qualities that have served as the basis for unjustified and systematically adverse treatment in the past".

Formal setup in the community

Random variables in the same probability space ([BH17]):

- X features describing an individual
- A sensitive attribute (gender, race...)
- Y target variable
- C = f(X, A) predictor estimating Y

Likelihood w.r.t. X and protected attribute A:

$$P(Y|X, = x, A = a).$$

Many FATML/FAT*ML works deal with *C* independence of *A* so that, for all groups in *A* (statistical parity):

$$P(C = c | X, = x, A = a) \approx P(C = c | X, = x, A = b)$$

For more conditions and definitions on fairness see [BH17] and [Rot18].

Formal setup in the community

Random variables in the same probability space ([BH17]):

- X features describing an individual
- A sensitive attribute (gender, race...) subgroup discovery!
- Y target variable
- C = f(X, A) predictor estimating Y

Likelihood w.r.t. X and protected attribute A:

$$P(Y|X, = x, A = a).$$

Many FATML/FAT*ML works deal with *C* independence of *A* so that, for all groups in *A* (statistical parity):

$$P(C = c | X, = x, A = a) \approx P(C = c | X, = x, A = b)$$

For more conditions and definitions on fairness see [BH17] and [Rot18].

Pre-processing. E.g. feature adjustment Post-processing. E.g. threshold calibration Training algorithm. E.g. regularization term Many more...

Threshold calibration

Source http://research.google.com/bigpicture/ attacking-discrimination-in-ml/ We should be aware of:

- Error function: What are we really optimising?
- Linearity assumption, e.g., Generalised Linear Models, K-means
- Independence of variables and variables interaction.

• ...

K-means assumptions

Source Documentation of scikit-learn

Everyone-is-right/wrong situations

Statistical learning will always tend to be conservative by definition

Is disparate treatment essential?

Fair facial recognition?

Non-binary group membership

Questions?

References i

- Barocas, Solon; Selbst, Andrew D, *Big Data's Disparate Impact*, California Law Review (2016) (en).
- Solon Barocas and Moritz Hardt, Fairness in Machine Learning. NIPS 2017 Tutorial, 2017.
- Danielle Ensign, Sorelle A. Friedler, Scott Neville, Carlos
 Scheidegger, and Suresh Venkatasubramanian, Runaway
 Feedback Loops in Predictive Policing, arXiv:1706.09847 [cs, stat]
 (2017) (en), arXiv: 1706.09847.
- - Julia Angwin Jeff Larson, How We Analyzed the COMPAS Recidivism Algorithm, May 2016.
- Kristian Lum and William Isaac, To predict and serve?, Significance 13 (2016), no. 5, 14–19 (en).

References ii

- Zachary C. Lipton, *The Doctor Just Won't Accept That!*, arXiv:1711.08037 [stat] (2017) (en), arXiv: 1711.08037.
- 🔋 Aaron Roth, Course in (un)fairness in machine learning, 2018.
- Zhe Zhang and Daniel B. Neill, Identifying Significant Predictive Bias in Classifiers, arXiv:1611.08292 [cs, stat] (2016) (en), arXiv: 1611.08292.
- Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang, *Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints*, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017), 2941–2951 (en), arXiv: 1707.09457.