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Summary of machine learning

Traditional programming
Explicit rules:
if email contains Viagra

then mark is-spam;
if email contains ...;
if email contains ...;

Example from Jason’s Machine
Learning 101

Machine learning programs
Learn from examples:
try to classify some emails;
change self to reduce errors;
repeat;
...then use the model to label

Since nobody is explicitly programming
it, it is often assumed to be fair,
non-discriminative, avoid human biases,
etc.
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Summary of machine learning
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alternative data, variables, loss 
function, labelling... will produce a 
different model
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Data transformation
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Many methods build/learn/create geometric transformations of the data
to optimize the classification/prediction task.
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The COMPAS case revisited



The COMPAS case revisited

• COMPAS: tool to assess the likelihood of a defendant becoming a
recidivist.

• Builts a model with historical records
• Input Variables: number of priors, number of misdemeanor, gender,

ethnic group, age, environment...
• Target variable: risk scale (1-10). High scores suggest

inprisionement or bail.
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Racial discrimination

Source Angwin and Larson [2016]

ProPublica: the system is biased against blacks since it overestimates
the risk for blacks (different false positive rates: 44.8% vs 23.4%)
Northpointe: the tool does not discriminates because it equally
estimates high-risk scores (true positives are equal across groups: 63% vs
59%)
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Compatible claims

Both definitions of fairness are
mathematically compatible because
the prevalence is different for
’blacks’ and ’whites’ Chouldechova
[2017].

Fuente Larson and Angwin [2016]
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What if we remove the race variable?

Source Dressel and Farid [2018]

…but there can be proxies to the ’race’ variable.
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Let’s remove almost all the variables

Source Dressel and Farid [2018]

Even when only using the number of priors and the age the model still
overestimating the risk for the black community (column B)!
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Risk as a proxy for race (and other groups)

Thoughts from Harcourt [2010]:

• Data-driven assessment has been reducing predictive variables and
relying more on criminal history of the person

• Criminal history is linked to race, there it is a proxy for race.
• Risk assessment interventions in the US has always produced

massive incarcelation of the black community.
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ML problem and actual probleme

What is the model actually optimizing? ŷ = f(x)

Hype

• “Predictive policing”
• “Minority Report”
• …

Actual prediction
The system is not predicting future crimes, but arrest for future crimes.
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Conclusions



Discussion

• What are the variables and what they represent?

• What is the actual task the system is solving/optimizing?
• Limitations of statistical definitions of fairness
• Classify, predict, score, estimate...
• US understanding of discrimination and demographic groups
• Does the data-driven proposal works better than the current

(human) process?
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Information enconding

More at https://www.genderbread.org/
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Working Paper

How to (partially) evaluate automated decision systems. Working paper
by Javier Sánchez-Monedero and Lina Dencik. December 2018.
https://datajusticeproject.net/working-papers/
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Thanks!
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