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Objective of the talk

2016: Beyond privacy

2020: Beyond algorithmic fairness
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Summary of machine learning

Traditional programming

Explicit rules:

if email contains Viagra

then mark is-spam;

if email contains ...;

if email contains ...;

Example from Jason’s Machine

Learning 101

Machine learning programs

Learn from examples:

try to classify some emails;

change self to reduce errors;

repeat;

...then use the model to label

Since nobody is explicitly programming

it, it is often assumed to be fair,

non-discriminative, avoid human biases,

etc. Also, the model is supposed to

perform the task they say the model

does.
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Summary of machine learning
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alternative data, variables, loss 
function, labelling... will produce a 
different model
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The COMPAS case revisited



The COMPAS case revisited

• COMPAS: tool to assess the likelihood of a defendant becoming a

recidivist.

• It builds a model with historical records

• Input Variables: number of priors, number of misdemeanor, gender,

ethnic group, age, environment...

• Target variable: risk scale (1-10). High scores suggest incarcelation

or bail.
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Racial discrimination

Source Angwin and Larson [2016]

ProPublica: the system is biased against blacks since it overestimates

the risk for blacks (different false positive rates: 44.8% vs 23.4%)

Northpointe: the tool does not discriminate because it equally estimates

high-risk scores (true positives are similar across groups: 63% vs 59%)
6



Compatible claims

Both definitions of fairness are

mathematically compatible because

the prevalence is different for

’blacks’ and ’whites’ Chouldechova

[2017].

Source Larson and Angwin [2016]
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What if we remove the race variable?

Source Dressel and Farid [2018]

. . . but there can be proxies to the ’race’ variable.
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Let’s remove almost all the variables

Source Dressel and Farid [2018]

score = f ([age, priors], θ)

Even when only using the number of priors and the age the model still

overestimating the risk for the black community (column B)!
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Risk as a proxy for race (and other groups)

Thoughts from Harcourt [2010]:

• Data-driven assessment has been reducing predictive variables and

relying more on criminal history of the person

• Criminal history is linked to race, there it is a proxy for race.

• Risk assessment interventions in the US has always produced

massive incarcelation of the black community.
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ML problem and actual problems

What is the model actually optimizing? ŷ = f (x)

Hype

• “Predictive policing”

• “Minority Report”

• . . .

Actual prediction

The system is not predicting future crimes, but arrest for future crimes.
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Scoring task

age

priors

recidivism
score stop and frisk

race

age

priors
recidivism

score

race

...
Direct use in the model

Indirect effect in the model 
(mediation, causation...)

Disclaimer: this is not a formal causal diagram
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Predictive hiring



Predictive hiring

Candidate pre-assessment with AI: predict talent, candidate matching,

etc.

Since ’talent’ is a weakly defined concept, these companies rely on

(proxy) data to define talent.

So “predict talent” becomes “compare the scores with current employees”
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Technical interventions and limitations

Bias mitigation, Technological fixes:

• Unawareness

• Adapted loss function

• Demographic parity w. 4/5th

rule

• Procedural means
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Conclusions



Discussion

A critical analysis (beyond privacy, beyond fairness) can reveal/expose

many interesting issues for social sciences.

• What are the variables and what they represent? How are they

produced?

• What is the actual task the system is solving/optimizing?

• Classify, predict, score, estimate...

• Limitations of statistical definitions of fairness

• We need to contextualize statistical concepts, such as algorithmic

fairness.

• Intersectionality, relational fairness, non-binary relations...

• Does the data-driven proposal works better than the current

(human) process?
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Thanks!
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